Learning and generalizing phonotactics with recurrent neural networks

Introduction

Humans display gradient preferences towards unattested sequences of sounds

- Phonotactic models that predict gradient preferences can give insight into computations and representations (Hayes and Wilson, 2008; Albright, 2009; Daland et al, 2011; Futrell et al, 2017)
- One such preference is sonority sequencing
- \Rightarrow Crosslinguistically attested preference for onset clusters which increase in sonority
- \Rightarrow Is a built in bias towards certain sonority profiles necessary to account for observed sonority sequencing effects?

Goal: Can gradient human sonority sequencing preferences be learned from lexical statistics alone?

Background

Not the first with this question (Berent et al 2007, 2008; Albright, 2007; Ren et al, 2010; Daland et al 2011; Jarosz and Rysling 2017)

- Daland et al. (2011) collect human judgements, train phonotactic models on CELEX, check correlations between model and human judgements
- \Rightarrow Run on syllabified and unsyllabified data
- \Rightarrow Best result: HW phonotactic learner (Hayes and Wilson, 2008)
- Correlations with aggregate human judgements of words containing attested, unattested, and marginally attested onsets of varying sonority profiles
- Onsets Attested | Marginal Unatteste tw tr sw |gw f|pw zr mr vw fw tl dn km ∫r pr pl kw kr kl ∫n∫m fn ml nl vl bw dg pk lm gr gl fr dw fw fl dr br ln rl lt bl sn sm $vr \theta w$ rn rd rg
- Best results from key models:

Model	Overall	Attested	Marginal	Unattested
BH	0.24	0.30	0.22	-0.26
HW	0.80	0.00	0.00	0.70
HW[syll]	0.83	0.00	0.02	0.76

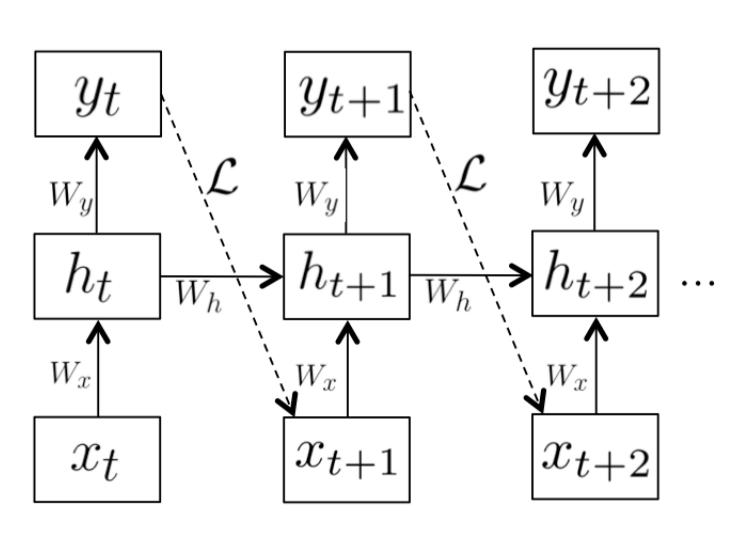
- To generalize models must represent similarity between segments
- All models perform better on syllabified data
- Projection is learnable from lexical statistics provided featural representations and syllabification
- Aside: This result has been shown to not hold for Polish (Jarosz, 2017)

Secondary goal: Can sonority sequencing preferences be learned with unsyllabified data and without prespecified linguistic features?

Tails			
ed			
	-atıf		
	-ibid		
	-asıp		
	-epid		
	-igɪf		
	-ezig		

Neural Language Models

- Language modeling defining a probability distribution over sequences, operationalized as next element prediction
- Elman (1990) sRNNs to predict upcoming segment, allow probability to be conditioned on entire preceding sequence
- Bengio (2003) Continuous representations in neural language models \Rightarrow Random real valued representation, optimized with objective,
- distributional information
- Mikolov (2010) Continuous representations in RNN language models Mirea and Bicknell (2019) - Continuous representations for next phoneme
- prediction with LSTMs



Current Approach

- ► HW and several sRNN LMs trained on 133,000 word CMU dictionary, no syllable annotation
- Fit models used to make predictions for all items in Daland et al.'s experiment, evaluated by measuring linear correlation between model and human judgement
- Two different phoneme representations, *features* and *embeddings*
- **Feature models** fixed vector 26 ternary features (Hayes, 2009)
- **Embedding models** randomly initialized vector in \mathbb{R}^{24}
- All models trained on next phoneme prediction, optimizing cross-entropy

 $L(y, \hat{y}) = -y \cdot log(\hat{y})$

- Input and output embeddings are optionally tied (Press and Wolf, 2018) Hyperparameters selected by grid search on 70/30 split of CMU dict.

Predictions

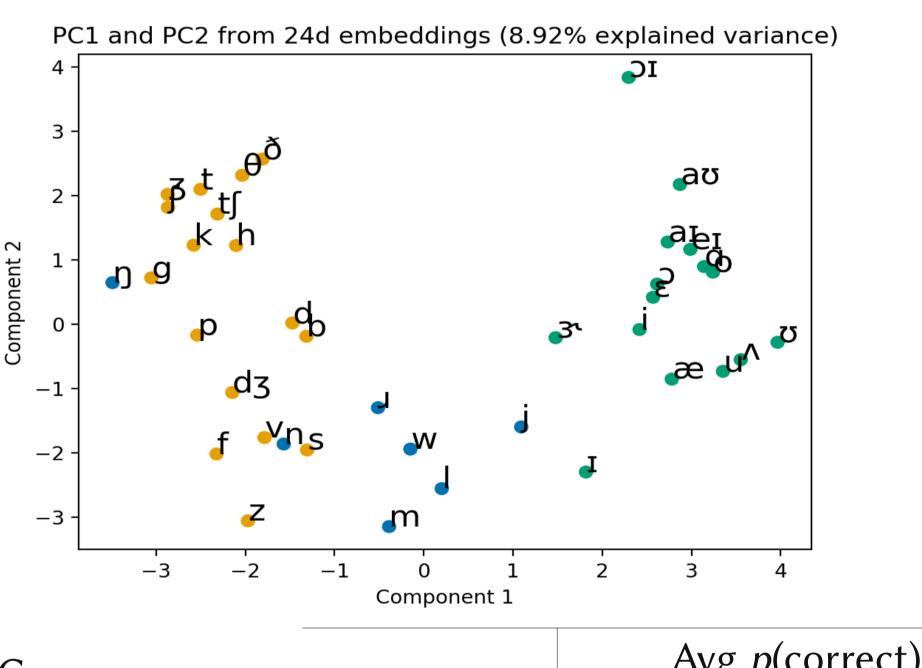
- 1. Neural models will be able to learn and generalize sonority sequencing as well as existing models
- 2. Embedding models will learn representations that capture sonority classes and predict sonority projection

Results

Correlation coefficients between human and average model judgement

			Overall	Attested	Unattested	Marginal
		H&W	0.759	0.000	0.686	0.362
		Feat	0.868	0.354	0.823	0.551
		Emb	0.866	0.365	0.765	0.609
		Tied Emb	0.853	0.491	0.738	0.664
HW Judgement by Goodness Score (r=0.759) Embedding NN Judgement by Goodness Score (r=0.866) Feature NN Judgement by Goodness Score (r=0.866)						
0.9 -		:	0.9 -			0.9 -
0.8 - 0.7 -			0.8 - 0.7 -		1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A	0.8 - 0.7 -
- 0.6 -		• × 8	0.6 - Ssaup 0.5 - 90.5 - 90.4 -		× × × × × × × × × × × × × × × × × × ×	- 0.0 -
0.5 - 0.4 -	•	- - ↓	90 90 90 90 90 90 90 90 90 90 90 90 90 9			ss 0.5 - upoo 0.4 -
0.3 -	A A A A	★ ★ ★ ★ ★	0.3 -		• • • •	0.3 -

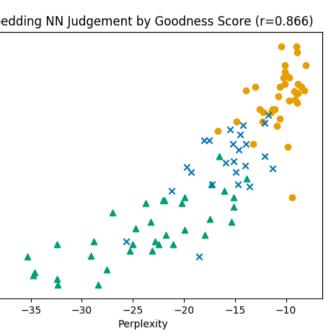
Are the embeddings capturing phonological features?

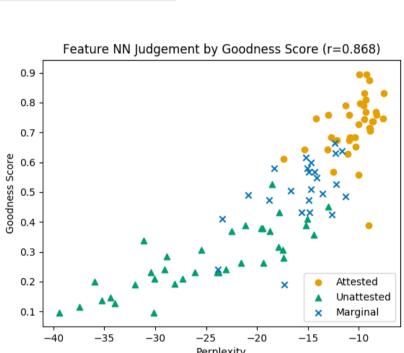


- Probe task: Can a 1-layer softmax classifier identify feature specifications from embeddings?
- 1000 classifiers for any feature with at least 7 positives and negatives

Conclusion

- for attested onsets
- informed features better predict generalization





PCA of tied embeddings - separation of sonorants, obstruents, and vowels

	Avg <i>p</i> (correct)		
Feature	Positive	Negative	Overall
SYLLABIC	0.981	0.970	0.975
CONSONANTAL	0.988	0.914	0.951
SONORANT	0.823	0.927	0.875
VOICE	0.666	0.645	0.655
CONTINUANT	0.469	0.392	0.431
ANTERIOR	0.490	0.702	0.596
	1		

Neural models predict sonority projection, also make gradient predictions

Distributional features predict behavior pretty well - but linguistically