Rethinking features	Assumptions and scope	Relating features and classes	Learning features	Conclusion	References

A method for learning features from observed phonological classes

Connor Mayer¹ and Robert Daland²

¹UCLA ²Independent

Annual Conference of the Canadian Linguistics Association University of British Columbia June 3, 2019

Rethinking features	Assumptions and scope	Relating features and classes	Learning features	Conclusion 0000	References
Overview					

This talk describes a fairly formal/computational paper.¹

My goal is to ignore as much of this formalism as possible!

Instead, I hope to:

- Convince you that the theoretical approach is worthwhile.
- Give you a sense of how the computational bits work.
- Convince you that this is a useful tool, even if you're not a computationalist!
 There is a freely available Python implementation of the algorithms I describe.

¹Mayer and Daland resubmitted

Rethinking features ●00000	Assumptions and scope	Relating features and classes	Learning features	Conclusion 0000	References
Where do fe	atures come fro	om?			

Classic texts propose features are universal.²

- All languages can be described by the same finite set of features.
- Reflect phonetic properties of the vocal tract and perceptual system that facilitate categorical distinctions.
 - And not just in humans.³
- Phonological processes operate on the classes they define.

²e.g., Chomsky and Halle 1968 ³e.g., Kuhl and Miller 1975

Rethinking features 0●0000	Assumptions and scope	Relating features and classes	Learning features	Conclusion 0000	References
Phonetically	disparate classe	25			

Many classes cannot be defined by a single set of phonetic properties.

- Classic example: Sanskrit ruki.4
 - /s/ becomes retroflexed following {r, u, k, i}
- Recent example: Cochabamba Quechua.
 - Gallagher (2019) shows that /в/ patterns as a voiceless stop.
- Mielke (2008) collected many such cases from grammars.
 - Only 71% of classes from 600 languages could be picked out by any feature system!

Rethinking features 00●000	Assumptions and scope	Relating features and classes	Learning features	Conclusion 0000	References
Alternative e	explanations for	phonetic disparity			

Maybe we need to expand our feature systems.

- $\bullet\,$ e.g., /l/ seems to be [+continuant] in some languages and [-continuant] in others. 5
- Should we add [midsagittal-continuant] and [parasagittal-continuant]?

It's unclear that this approach has explanatory value.

- How many additional features would we need?
- Could these features all be given a phonetic interpretation?
- How do learners determine which features are relevant for their language?

⁵e.g., Kaisse 2002; Mielke 2008

Rethinking features 000●00	Assumptions and scope	Relating features and classes	Learning features 000000	Conclusion 0000	References
Learned feat	ures				

Researchers have proposed that features may be learned and language-specific.⁶

• Feature systems are derived from perceived similarities between sounds.

• Typological patterns are by-products of general human cognitive capabilities, properties of human vocal tract and auditory system, channel bias, etc.

⁶e.g., Blevins 2004; Mielke 2008; Archangeli and Pulleyblank 2015; MacWhinney and O'Grady 2015; Archangeli and Pulleyblank 2018

Rethinking features 0000●0	Assumptions and scope	Relating features and classes	Learning features	Conclusion 0000	References
Learned vs.	universal feature	es			

Learned features are compatible with the basic motivation for universal feature theory!

• Certain phonetic properties are naturally salient.

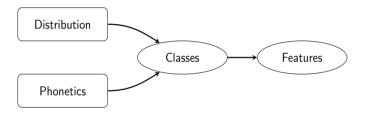
A few additional assumptions:

- The distribution of sounds can inform their features.
 - Phonotactic properties, conditioning of processes, etc.
- No one dimension has primacy.
 - The learner uses the full range of available information.
- Features may vary cross-linguistically.

Rethinking features 00000●	Assumptions and scope	Relating features and classes	Learning features	Conclusion 0000	References
What do we	gain from eme	ergent features?			

With universal features, we start from typology and then worry about exceptions.

With emergent features, we focus on learning mechanisms.


• What are these mechanisms?

• How do they contribute to typological patterns?

• To what extent can distribution contribute to feature learning?⁷

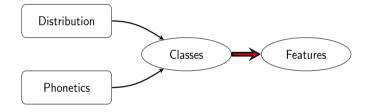
Rethinking features	Assumptions and scope ●00	Relating features and classes	Learning features	Conclusion 0000	References
Assumptions	of our model				

We assume a model of feature learning like below.

- The learner has converged on a segmental representation.⁸
- Some mechanism has identified a set of input classes.
 - Based on acoustic, articulatory, distributional similarity, etc.
- A feature system is derived from the set of input classes.
- ⁸e.g., Lin 2005; Feldman et al. 2013

Rethinking features	Assumptions and scope ○●○	Relating features and classes	Learning features	Conclusion 0000	References
Why start f	rom classes?				

It's unclear how features can be learned without being motivated by the classes they characterize.


Past approaches to learning phonological categories learn classes.

- From phonetic data.⁹
- From distribution.¹⁰

Class learning likely involves integration of multiple such sources of information.

⁹e.g., Lin 2005; Mielke 2012 ¹⁰e.g., Calderone 2009; Goldsmith and Xanthos 2009; Mayer submitted

Rethinking features	Assumptions and scope 00●	Relating features and classes	Learning features	Conclusion 0000	References
Scope of this	s work				

We focus on how to get from classes to features.

Rethinking features	Assumptions and scope	Relating features and classes ●000000	Learning features	Conclusion 0000	References
Terminology					

A class system is a set of classes.

A **feature system** is a set of features over a segmental inventory, and the values they can take.

• Features are **functions** that map segments to values.

- Vowels
- Glides
- Liquids
- Nasals
- Obstruen**T**s

σ	syl	cons	apprx	son
V	+	-	+	+
G	—	_	+	+
L	-	+	+	+
N	-	+	_	+
Т	-	+	—	-

Rethinking features	Assumptions and scope	Relating features and classes ○●○○○○○	Learning features	Conclusion 0000	References
Featural desc	criptors				

A featural descriptor is a set of feature/value pairs.

• Intensional description of a class.

 $\begin{bmatrix} +\mathsf{son} \\ +\mathsf{apprx} \end{bmatrix}$

• Its *extension* is a set of segments.

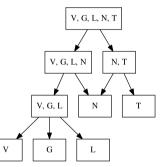
$$\left\langle \begin{bmatrix} +son \\ +apprx \end{bmatrix} \right\rangle = \{V, G, L\}$$

A feature system **covers** a class system if there is (at least) one unique featural descriptor for (at least) every class.

σ	syl	cons	apprx	son
V	+	-	+	+
G	-	-	+	+
L	-	+	+	+
N	-	+	_	+
Т	-	+	_	-

Rethinking features	Assumptions and scope	Relating features and classes	Learning features 000000	Conclusion 0000	References
Combining f	eatural descript	ors			

Intersection of classes corresponds to union of featural descriptors.

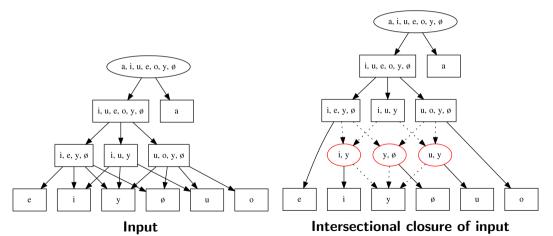

$$\left\langle \begin{array}{c} [+\text{son}] \end{array} \right\rangle = \{\text{V, G, L, N} \} \\ \left\langle \begin{array}{c} [+\text{cons}] \end{array} \right\rangle = \{\text{L, N, T} \} \\ \\ \left[\begin{array}{c} +\text{son} \\ +\text{cons} \end{array} \right] \\ \right\rangle = \{\text{L, N}\} = \{\text{V, G, L, N}\} \cap \{\text{L, N, T}\} \end{array} \right. \\ \hline \begin{array}{c} \sigma & \text{syl} & \text{cons} & \text{apprx} & \text{son} \\ \hline \text{V} & + & - & + & + \\ \text{G} & - & - & + & + \\ \text{L} & - & + & + & + \\ \text{N} & - & + & - & + \\ \hline \text{T} & - & + & - & - \end{array}$$

Rethinking features	Assumptions and scope	Relating features and classes	Learning features	Conclusion 0000	References
Parent / child	relationships				

Class systems are hierarchical.

Parent/child relationships are one way of expressing this hierarchy.

• Crucial for deriving feature systems.



Parent/child relationships

X is a parent of Y iff Y is a subset of X, and no class intervenes between the two.

Rethinking features	Assumptions and scope	Relating features and classes 0000000	Learning features 000000	Conclusion 0000	References
Intersectiona	l closure				

The intersectional closure of a class system is the set of all intersections of its classes.

Rethinking features	Assumptions and scope	Relating features and classes 00000€0	Learning features 000000	Conclusion 0000	References
Bringing it	all together				

Intersectional closure covering theorem

If a feature system covers a class system, it also covers its intersectional closure.

• e.g., if you have [+high] and [+front], you can't help getting $\begin{vmatrix} +high \\ +front \end{vmatrix}$.

Multiple parenthood theorem

If a class in the intersectional closure has more than two parents, it is *exactly equal* to the intersection of any two of its parents.

- y, ø y
- This entails that any class with more than one parent can be uniquely identified by the union of the features of any two of its parents!

Rethinking features	Assumptions and scope	Relating features and classes 000000●	Learning features	Conclusion 0000	References
Learning fea	tures from class	ses			

Now we can turn to the main question:

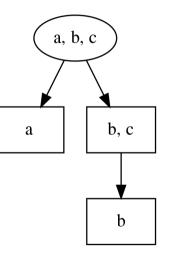
How do we learn features from classes?

Central insight

We need a feature/value pair for every class that has a single parent in the intersectional closure.

- If a class has no parents, it's the segmental inventory.
- If a class has more than one parent, it can be picked out by the union of its parents' features.

Rethinking features	Assumptions and scope	Relating features and classes	Learning features ●00000	Conclusion 0000	References
Al					

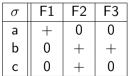

Algorithms for learning features from classes

We will use a toy class system for expository purposes.

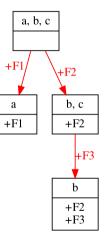
• A more complex example is provided later.

This class system:

- is intersectionally closed.
- does not contain all singleton classes.


Rethinking features 000000	Assumptions and scope	Relating features and classes	Learning features 0●0000	Conclusion 0000	References
Privative sp	ecification				

Privative specification algorithm


Assign a new +f feature/value pair to all segments in each class that has exactly one parent.

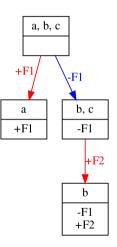
Assigns **privative** values: $\{+, 0\}$

Compatible with theories that consider all features privative.¹¹

Complement					
Rethinking features	Assumptions and scope	Relating features and classes	Learning features 00●000	Conclusion 0000	References


Complementary specification

Complementary specification algorithm

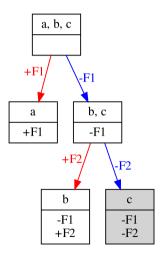

Assign a new +f feature/value pair to each class that has exactly one parent, and a -f feature/value pair to the complement of that class with respect to its parent if it is present in the input.

Assigns contrastive values: {+, -, 0}

There are theoretical reasons to allow '-' feature values.¹²

Rethinking features	Assumptions and scope	Relating features and classes	Learning features 000●00	Conclusion 0000	References

Inferential complementary specification


Inferential complementary specification algorithm

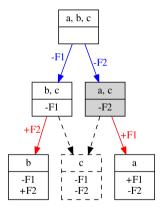
Assign a new +f feature/value pair to each class that has exactly one parent, and a -f feature/value pair to the complement of that class with respect to its parent *even if it is not present in the input*.

Assigns **contrastive** values: {+, -, 0}

Assumes limited generalization based on input classes.

σ	F1	F2
а	+	0
b	-	+
с	-	-

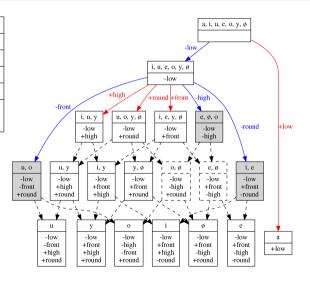
Rethinking features	Assumptions and scope	Relating features and classes	Learning features 0000●0	Conclusion 0000	References
Full specific	ration				


Inferential complementary specification algorithm

Assign a new +f feature/value pair to each class that has exactly one parent, and a -f feature/value pair to the complement of that class with respect to the *full segmental inventory* even if it is not present in the input.

Assigns full values: $\{+, -\}$

Prohibits underspecification.¹³


¹³e.g., Chomsky and Halle 1968

Rethinking features	Assumptions and scope	Relating features and classes	Learning features	Conclusion 0000	References
N.4 11 11					

More realistic input

alphabet	{a, i, u, e, o, y, ø}
non-low	{i, u, e, o, y, ø}
high	{i, u, y}
front	{i, e, y, ø}
round	{u, o, y, ø}
singletons	$\{a\}, \{i\}, \{u\}, \{e\}, \{o\},$
	{y}, {ø}

σ	low	front	high	round
а	+	0	0	0
i	-	+	+	-
u	-	-	+	+
е	-	+	-	-
о	-	-	-	+
У	-	+	+	+
ø	-	+	—	+

Rethinking features	Assumptions and scope	Relating features and classes	Learning features	Conclusion ●000	References
Summary					

A symbolic feature system can be learned from a set of input classes.

• Done without reference to phonetic properties.

We presented four algorithms that differ in assumptions about

- what feature values are permitted.
- whether there is generalization from the input classes.

They operate based on insights into the hierarchical structure of class systems.

Rethinking features	Assumptions and scope	Relating features and classes	Learning features	Conclusion 0●00	References
Applications	to future resear	rch			

We freely provide the code for use and extension in future research.

Input:

- Set of classes.
- Choice of featurization algorithm.

Output:

• A feature system that covers those classes.

Can be used as a component in phonological learning systems.

• E.g., systems that take us from a data set to a phonological grammar.

Rethinking features	Assumptions and scope	Relating features and classes	Learning features	Conclusion 00●0	References
Applications	to future resea	arch			

We can revisit cases of phonetically disparate classes.

• Understand the feature systems that underpin these.

We can think more about underspecification.

- These algorithms *deterministically* predict underspecification.
- Testable against the literature and artificial grammar learning¹⁴ studies.
- Allow us to avoid "opportunistic underspecification." 15
- Similar to contrastive hierarchies,¹⁶ but with different inputs and less stipulation.

We can study how learners generalize from the input.

- Provides testable predictions about how learners might generalize across classes.
- Also testable with artificial grammar learning studies.

```
<sup>14</sup>e.g., Moreton and Pater 2012
<sup>15</sup>Steriade 1995
<sup>16</sup>Dresher 2003; Hall 2007
```

Rethinking features	Assumptions and scope	Relating features and classes	Learning features 000000	Conclusion 000●	References
Acknowledge	ements				

Thanks to Bruce Hayes, Kie Zuraw, Tim Hunter, and the members of the UCLA phonology seminar for their valuable questions and insights. This research was supported by a Social Sciences and Humanities Research Council of Canada Doctoral Award to the first author.

See **connormayer.com** for the full paper and code.

Rethinking features	Assumptions and scope	Relating features and classes	Learning features	Conclusion 0000	References
References I					

- Anderson, J. M. & Ewen, C. J. (1987). *Principles of Dependency Phonology*. Cambridge: Cambridge University Press.
- Archangeli, D. (2011). Feature specification and underspecification. In M. van Oostendorp, C. J. Ewen, E. Hume, & K. Rice (Eds.), *The Blackwell Companion to Phonology* (pp. 148–170). Oxford: Wiley-Blackwell.
- Archangeli, D. & Pulleyblank, D. (1994). *Grounded phonology*. Cambridge, MA: MIT Press.
- Archangeli, D. & Pulleyblank, D. (2015). Phonology without universal grammar. *Frontiers in Psychology*, *6*, 1229.
- Archangeli, D. & Pulleyblank, D. (2018). Phonology as an emergent system. In S. Hannahs & A. Bosch (Eds.), The Routledge Handbook of Phonological Theory (pp. 476–503). London: Routledge.

Avery, P. & Rice, K. (1989). Segment structure and coronal underspecification. *Phonology*, *6*, 179–200.

Rethinking features	Assumptions and scope	Relating features and classes	Learning features	Conclusion 0000	References
References II					

- Blevins, J. (2004). *Evolutionary phonology: The emergence of sound patterns.* Cambridge: Cambridge University Press.
- Calderone, B. (2009). Learning phonological categories by independent component analysis. *Journal of Quantitative Linguistics*, *16*(2), 132–156.
- Chomsky, N. & Halle, M. (1968). *The sound pattern of english*. New York: Harper & Row.
- Dresher, E. (2003). The contrastive hierarchy in phonology. In D. C. Hall (Ed.), Toronto Working Papers in Linguistics 20: Special issue on contrast in phonology. University of Toronto.
- Feldman, N., Griffiths, T., Goldwater, S., & Morgan, J. (2013). A role for the developing lexicon in phonetic category acquisition. *Psychological Review*, 120(4), 751–778.
- Frisch, S. A. (1996). *Similarity and frequency in phonology*. (Doctoral dissertation, Northwestern University).

Rethinking features	Assumptions and scope	Relating features and classes	Learning features	Conclusion 0000	References
References II	I				

- Gallagher, G. (2019). Phonotactic knowledge and phonetically unnatural classes: The plain uvular in cochabamba quechua. *Phonology*, *36*, 37–60.
- Goldsmith, J. & Xanthos, A. (2009). Learning phonological categories. *Language*, *85*(1), 4–38.
- Hall, D. C. (2007). The Role and Representation of Contrast in Phonological Theory. (Doctoral dissertation, University of Toronto).
- Hayes, B., Zuraw, K., Siptar, P., & Londe, Z. (2009). Natural and unnatural constraints in hungarian vowel harmony. *Language*, *85*, 822–863.
- Kaisse, E. M. (2002). Laterals are [-continuant]. MS, University of Washington.
- Kiparsky, P. (1973). Phonological representations. In O. Fujimura (Ed.), Three Dimensions of Linguistic Theory (pp. 1–136). Tokyo: TEC Co.
- Kuhl, P. K. & Miller, J. D. (1975). Speech Perception by the Chinchilla: Voiced-Voiceless Distinction in Alveolar Plosive Consonants. *Science*, 190, 69–72.

Rethinking features	Assumptions and scope	Relating features and classes	Learning features	Conclusion 0000	References				
References IV									

- Lahiri, A. & Marslen-Wilson, W. (1991). The mental representation of lexical form: A phonological approach to the recognition lexicon. *Cognition*, *38*(3), 245–294.
- Lin, Y. (2005). Learning features and segments from waveforms: A statistical model of early phonological acquisiton. (Doctoral dissertation, UCLA).
- MacWhinney, B. & O'Grady, W. (Eds.). (2015). The Handbook of Language *Emergence*. Chichester: John Wiley & Sons.
- Mayer, C. (submitted). An algorithm for learning phonological classes from distributional similarity.
- Mayer, C. & Daland, R. (resubmitted). A method for projecting features from observed sets of phonological classes.
- Mielke, J. (2008). The emergence of distinctive features. Oxford: Oxford University Press.
- Mielke, J. (2012). A phonetically-based metric of sound similarity. *Lingua*, *1222*, 145–163.

Rethinking features	Assumptions and scope	Relating features and classes	Learning features 000000	Conclusion 0000	References			
References V								

- Moreton, E. (2008). Analytic bias and phonological typology. *Phonology*, 25, 83–128.
- Moreton, E. & Pater, J. (2012). Structure and substance in artificial phonology learning. part i: Structure, part ii: Substance. *Language and Linguistics Compass*, 6(11), 686-701 and 702-718.
- Steriade, D. (1995). Markedness and underspecification. In J. Goldsmith (Ed.), The Handbook of Phonological Theory (pp. 114–175). Oxford/Cambridge, MA: Blackwell.
- Vennemann, T. (1974). Sanskrit ruki and the concept of a natural class. Linguistics, 130, 91–97.