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Overview

This talk describes a fairly formal/computational paper.1

My goal is to ignore as much of this formalism as possible!

Instead, I hope to:

Convince you that the theoretical approach is worthwhile.

Give you a sense of how the computational bits work.

Convince you that this is a useful tool, even if you’re not a computationalist!

There is a freely available Python implementation of the algorithms I describe.

1Mayer and Daland resubmitted
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Where do features come from?

Classic texts propose features are universal.2

All languages can be described by the same finite set of features.

Reflect phonetic properties of the vocal tract and perceptual system that facilitate
categorical distinctions.

And not just in humans.3

Phonological processes operate on the classes they define.

2e.g., Chomsky and Halle 1968
3e.g., Kuhl and Miller 1975
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Phonetically disparate classes

Many classes cannot be defined by a single set of phonetic properties.

Classic example: Sanskrit ruki.4

/s/ becomes retroflexed following {r, u, k, i}

Recent example: Cochabamba Quechua.

Gallagher (2019) shows that /K/ patterns as a voiceless stop.

Mielke (2008) collected many such cases from grammars.

Only 71% of classes from 600 languages could be picked out by any feature system!

4e.g., Kiparsky 1973; Vennemann 1974
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Alternative explanations for phonetic disparity

Maybe we need to expand our feature systems.

e.g., /l/ seems to be [+continuant] in some languages and [–continuant] in
others.5

Should we add [midsagittal-continuant] and [parasagittal-continuant]?

It’s unclear that this approach has explanatory value.

How many additional features would we need?

Could these features all be given a phonetic interpretation?

How do learners determine which features are relevant for their language?

5e.g., Kaisse 2002; Mielke 2008
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Learned features

Researchers have proposed that features may be learned and language-specific.6

Feature systems are derived from perceived similarities between sounds.

Typological patterns are by-products of general human cognitive capabilities,
properties of human vocal tract and auditory system, channel bias, etc.

6e.g., Blevins 2004; Mielke 2008; Archangeli and Pulleyblank 2015; MacWhinney and O’Grady
2015; Archangeli and Pulleyblank 2018
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Learned vs. universal features

Learned features are compatible with the basic motivation for universal feature theory!

Certain phonetic properties are naturally salient.

A few additional assumptions:

The distribution of sounds can inform their features.

Phonotactic properties, conditioning of processes, etc.

No one dimension has primacy.

The learner uses the full range of available information.

Features may vary cross-linguistically.
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What do we gain from emergent features?

With universal features, we start from typology and then worry about exceptions.

With emergent features, we focus on learning mechanisms.

What are these mechanisms?

How do they contribute to typological patterns?

To what extent can distribution contribute to feature learning?7

7e.g., Moreton 2008; Hayes et al. 2009
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Assumptions of our model

We assume a model of feature learning like below.

Phonetics

Distribution

Classes Features

The learner has converged on a segmental representation.8

Some mechanism has identified a set of input classes.

Based on acoustic, articulatory, distributional similarity, etc.

A feature system is derived from the set of input classes.

8e.g., Lin 2005; Feldman et al. 2013
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Why start from classes?

It’s unclear how features can be learned without being motivated by the classes they
characterize.

Past approaches to learning phonological categories learn classes.

From phonetic data.9

From distribution.10

Class learning likely involves integration of multiple such sources of information.

9e.g., Lin 2005; Mielke 2012
10e.g., Calderone 2009; Goldsmith and Xanthos 2009; Mayer submitted
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Scope of this work

Phonetics

Distribution

Classes Features

We focus on how to get from classes to features.
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Terminology

A class system is a set of classes.

A feature system is a set of features over a segmental inventory, and the values they
can take.

Features are functions that map segments to values.

Vowels

Glides

Liquids

Nasals

ObstruenTs

σ syl cons apprx son

V + – + +
G – – + +
L – + + +
N – + – +
T – + – –
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Featural descriptors

A featural descriptor is a set of feature/value pairs.

Intensional description of a class.[
+son
+apprx

]
Its extension is a set of segments.

〈 [+son
+apprx

] 〉
= {V, G, L}

σ syl cons apprx son

V + – + +
G – – + +
L – + + +
N – + – +
T – + – –

A feature system covers a class system if there is (at least) one unique featural
descriptor for (at least) every class.
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Combining featural descriptors

Intersection of classes corresponds to union of featural descriptors.

〈
[+son]

〉
= {V, G, L, N}

〈
[+cons]

〉
= {L, N, T}

〈 [+son
+cons

] 〉
= {L, N} = {V, G, L, N} ∩ {L, N, T}

σ syl cons apprx son

V + – + +
G – – + +
L – + + +
N – + – +
T – + – –
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Parent/child relationships

Class systems are hierarchical.

Parent/child relationships are one way of expressing
this hierarchy.

Crucial for deriving feature systems.

Parent/child relationships

X is a parent of Y iff Y is a subset of X , and no class intervenes between the two.
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Intersectional closure

The intersectional closure of a class system is the set of all intersections of its classes.

Input Intersectional closure of input
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Bringing it all together

Intersectional closure covering theorem

If a feature system covers a class system, it also covers its intersectional closure.

e.g., if you have [+high] and[+front], you can’t help getting
[

+high
+front

]
.

Multiple parenthood theorem

If a class in the intersectional closure has more than
two parents, it is exactly equal to the intersection of
any two of its parents.

This entails that any class with more than one
parent can be uniquely identified by the union of
the features of any two of its parents!
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Learning features from classes

Now we can turn to the main question:

How do we learn features from classes?

Central insight

We need a feature/value pair for every class that has a single parent in the
intersectional closure.

If a class has no parents, it’s the segmental inventory.

If a class has more than one parent, it can be picked out by the union of its
parents’ features.
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Algorithms for learning features from classes

We will use a toy class system for expository purposes.

A more complex example is provided later.

This class system:

is intersectionally closed.

does not contain all singleton classes.
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Privative specification

Privative specification algorithm

Assign a new +f feature/value pair to all segments in each class
that has exactly one parent.

Assigns privative values: {+, 0}

Compatible with theories that consider all features privative.11

σ F1 F2 F3

a + 0 0
b 0 + +
c 0 + 0

11e.g., Anderson and Ewen 1987; Avery and Rice 1989; Lahiri and Marslen-Wilson 1991; Frisch
1996
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Complementary specification

Complementary specification algorithm

Assign a new +f feature/value pair to each class that has exactly
one parent, and a −f feature/value pair to the complement of
that class with respect to its parent if it is present in the input.

Assigns contrastive values: {+, –, 0}

There are theoretical reasons to allow ‘−’ feature values.12

σ F1 F2

a + 0
b – +
c – 0

12e.g., Archangeli and Pulleyblank 1994; Archangeli 2011
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Inferential complementary specification

Inferential complementary specification algorithm

Assign a new +f feature/value pair to each class that has
exactly one parent, and a −f feature/value pair to the
complement of that class with respect to its parent even if
it is not present in the input.

Assigns contrastive values: {+, –, 0}

Assumes limited generalization based on input classes.

σ F1 F2

a + 0
b - +
c - -
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Full specification

Inferential complementary specification algorithm

Assign a new +f feature/value pair to each class that has
exactly one parent, and a −f feature/value pair to the
complement of that class with respect to the full
segmental inventory even if it is not present in the input.

Assigns full values: {+, –}
Prohibits underspecification.13

σ F1 F2

a + -
b - +
c - -

13e.g., Chomsky and Halle 1968
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More realistic input

alphabet {a, i, u, e, o, y, ø}
non-low {i, u, e, o, y, ø}
high {i, u, y}
front {i, e, y, ø}
round {u, o, y, ø}
singletons {a}, {i}, {u}, {e}, {o},

{y}, {ø}

σ low front high round
a + 0 0 0
i – + + –
u – – + +
e – + – –
o – – – +
y – + + +
ø – + – +
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Summary

A symbolic feature system can be learned from a set of input classes.

Done without reference to phonetic properties.

We presented four algorithms that differ in assumptions about

what feature values are permitted.

whether there is generalization from the input classes.

They operate based on insights into the hierarchical structure of class systems.
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Applications to future research

We freely provide the code for use and extension in future research.

Input:

Set of classes.

Choice of featurization algorithm.

Output:

A feature system that covers those classes.

Can be used as a component in phonological learning systems.

E.g., systems that take us from a data set to a phonological grammar.
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Applications to future research

We can revisit cases of phonetically disparate classes.

Understand the feature systems that underpin these.

We can think more about underspecification.

These algorithms deterministically predict underspecification.

Testable against the literature and artificial grammar learning14 studies.

Allow us to avoid “opportunistic underspecification.”15

Similar to contrastive hierarchies,16 but with different inputs and less stipulation.

We can study how learners generalize from the input.

Provides testable predictions about how learners might generalize across classes.

Also testable with artificial grammar learning studies.
14e.g., Moreton and Pater 2012
15Steriade 1995
16Dresher 2003; Hall 2007
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