
UNIVERSITY OF CALIFORNIA

Los Angeles

An Algorithm for Learning Phonological

Classes from Distributional Similarity

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Arts in Linguistics

by

Connor Mayer

2018



c© Copyright by

Connor Mayer

2018



ABSTRACT OF THE THESIS

An Algorithm for Learning Phonological

Classes from Distributional Similarity

by

Connor Mayer

Master of Arts in Linguistics

University of California, Los Angeles, 2018

Professor Bruce Hayes, Chair

An outstanding question in phonology is to what degree the learner uses distributional

information rather than substantive properties of speech sounds when learning phonological

structure. This paper presents an algorithm that learns phonological classes from only

distributional information: the contexts in which sounds occur. The input is a segmental

corpus, and the output is a set of phonological classes. The algorithm is first tested on

an artificial language with both overlapping and nested classes reflected in the distribution.

It retrieves the expected classes, and performs well as distributional noise is added. It is

then tested on four natural languages. It distinguishes between consonants and vowels in all

cases, and finds more detailed, language-specific structure. These results improve on past

approaches, and are encouraging given the paucity of the input. Further refined models may

provide additional insight into which phonological classes are apparent in the distributions

of sounds in natural languages.
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CHAPTER 1

Introduction

An outstanding question in all areas of linguistics is how much of human language is in-

nate and how much is learned from data. From this perspective, the question of how much

information about phonological categories can be retrieved strictly from distributional infor-

mation is of considerable interest to the field of phonology.

One of the central observations of phonological theory is that speech sounds tend to

pattern according to phonetic similarity, both within and across languages. For example,

processes like final obstruent devoicing, where voiced obstruents become voiceless word-

finally or before voiceless consonants, are common across languages. This process often

targets all voiced stops, affricates, and fricatives in a language. Despite the differences in

place and manner of articulation across these sounds, they share two phonetic properties

that cause them to be treated as a single class of sounds: near or complete impediment of

the airflow out of the vocal tract, and vocal fold vibration.

Based on this robust typological generalization, classic work has suggested that there is a

universal tendency for language learners to group sounds based on their phonetic properties

(e.g. Chomsky & Halle, 1968). Languages may use classes differently in their phonologies,

but in principle the set of classes available across languages should be the same by virtue of

shared human physiology.

There is evidence, however, that there are classes that do not appear to be phonetically

coherent, such as the notorious Sanskrit “ruki” class (e.g. Kiparsky, 1973; Vennemann, 1974)

or the triggers for Philadelphia /æ/-tensing (Labov et al., 2006). Mielke (2008) presents

many such cases. Instances of variable patterning of a segment across languages also bear

on this issue. For example, /l/ varies in whether a language treats it as
[

+continuant
]

or
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[
−continuant

]
(e.g. Kaisse, 2002; Mielke, 2008). In line with this observation, I use the

term phonological class throughout this paper, rather than natural class, to refer to a set

of sounds that behave in a uniform way in the phonology of a language without necessarily

sharing any phonetic properties.

These observations have led some researchers to propose that phonological classes may be

learned and language-specific (e.g. Mielke, 2008; MacWhinney & O’Grady, 2015; Archangeli

& Pulleyblank, 2015). Under this view, phonologically salient classes need not be phonet-

ically coherent, and distributional learning accounts for a much larger part of phonological

acquisition than previously thought. The observation that classes tend to be phonetically

coherent cross-linguistically can be explained by a tendency for similar sounds to undergo

similar diachronic processes that lead to this patterning (e.g. Blevins, 2004).

It may be the case that these phonetically disparate classes can be captured by other

means. Interactions between phonological processes that target phonetically coherent classes

may result in what superficially appear to be unusual classes. Alternatively, these classes

may be coherent with respect to a phonetic dimension that has not yet been included in

current feature systems. Regardless of whether one is willing to commit to the position

of emergent classes, these ideas raise theoretically interesting questions. Namely, to what

extent are phonological classes apparent in the distribution of sounds in a language, and to

what extent might learners use this information?

This paper will investigate the learning of phonological classes when only distributional

information is available. It will do so by detailing an algorithm that attempts to learn as

much phonological information as possible solely from the contexts in which sounds do and

do not occur. This is not to suggest that phonetic information does not play an important

role in characterizing phonological classes: rather it is an attempt to see how far we can get

when restricting ourselves to only one of the many sources of information available to the

learner.

From a high level, the algorithm consists of two components. In the first stage, sounds in a

phonological corpus are projected into a vector space based on their distributional properties.
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In the second stage, a clustering technique is used on these vector representations to retrieve

a set of classes. This is done by performing Principal Component Analysis and then applying

one-dimensional k-means clustering to the resulting principal components to retrieve classes.

The procedure is then recursively performed on the discovered classes.

Aside from eschewing phonetic information, this algorithm operates under two additional

assumptions. First, it focuses only on phonotactic information: there is no explicit attempt

to capture alternations. Although this may be a reasonable assumption about the initial

phonological learning done by infants, it is expressly adopted here as a simplifying assump-

tion. More sophisticated models may benefit from incorporating this information. Second,

because it takes phonemic text corpora as input, it necessarily assumes that the learner has

access to a segmental representation of speech.

The output of the algorithm is a set of phonological classes that may be viewed as

implicitly reflecting a feature system, in that any class contained in this set can be uniquely

characterized by some combination of feature/value pairs. The process of deriving an explicit

feature system from a set of classes is described in a related paper (Mayer & Daland, in

preparation).

The paper is structured as follows. Chapter 2 reviews past research that has taken a

distributional approach to learning linguistic structure. Chapter 3 describes a toy language

with well defined phonotactic properties, which will serve as a running example throughout

the paper and a basic test case for the algorithm. The next two chapters describe the

components of the algorithm. Chapter 4 details how a vector space representation of the

sounds of a language can be generated from a phonological corpus. Chapter 5 shows how

a combination of Principal Component Analysis and clustering algorithms can be used to

extract potential phonological classes from such embeddings, and details its performance

on the toy language. Chapter 7 presents the results of its application to Samoan, English,

French, and Finnish. It is able to successfully distinguish consonants and vowels in every

case, and retrieves interpretable classes within those categories for each language. Finally,

Chapter 8 compares these results against past work, and Chapter 9 offers discussion of the

results and proposals for future research.
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CHAPTER 2

Previous work

Distributional learning has been proposed as a learning mechanism in most areas of linguis-

tics, suggesting that it may be a domain-general process. Examples include word segmen-

tation and morphology (e.g. Saffran et al., 1996; Goldwater et al., 2009; Goldsmith, 2010),

syntax (e.g. Redington et al., 1998; Wonnacott et al., 2008), and semantics (e.g. Andrews

et al., 2009; Bruni et al., 2014).

Distributional approaches to phonology have been explored since the early part of the

20th century, but as Goldsmith and Xanthos (2009) point out, most of this work is not

well known today. A number of pre-generative phonologists discussed the merits of such

approaches and potential implementations, but this work was necessarily limited by techno-

logical factors.1 The increasing availability of ever more powerful computers together with

advances in statistical and machine learning research have recently rendered such approaches

more viable.

Powers (1997) provides an extremely detailed empirical comparison of early work building

on these advances. Notable additions include the abstraction of representing sounds as points

in a high dimensional space (see Chapter 4), and the idea of using matrix factorization and

bottom-up clustering algorithms to group sounds together. While these approaches were

a notable step forward, they frequently failed to achieve the basic distinction between the

consonants and vowels of a language. This should be taken with some caution, however, as

Powers ran his evaluations on orthographic rather than phonemic data.

In the same time period, Ellison (1991, 1994) explored a minimum description length

1See Appendix A in Goldsmith and Xanthos (2008) for a detailed summary of this work.
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analysis, which uses an information theoretic objective function to evaluate the success with

which a set of classes fits an observed data set. The optimal candidate set of classes is

found using simulated annealing. Ellison reports that his method is generally successful in

differentiating consonants and vowels across a wide range of languages, as well as identifying

aspects of harmony systems. Ellison also runs his models on orthographic data.

More recently, Goldsmith and Xanthos (2009) compared three different approaches to

learning phonological classes in English, French, and Finnish. The first, Sukhotin’s algo-

rithm, is mostly of historical interest, but can differentiate between consonants and vowels

reasonably well using calculations simple enough to be performed by hand. Their second

approach uses spectral clustering, which models distributional similarity between segments

as an undirected graph with weighted edges. By representing the graph as a matrix and us-

ing eigendecomposition to find an optimal partition into two or more groups, Goldsmith &

Xanthos were able to successfully achieve a distinction between consonants and vowels, and

a basic characterization of harmony systems. The final approach they examine is maximum

likelihood hidden Markov models. These use a finite state machine with some small number

of states (e.g. two for vowel vs. consonant). The model is trained to calculate transition and

emission probabilities that maximise the likelihood of the data. The ratio of emission prob-

abilities for each segment between states can then be used to classify them. This approach

worked well for distinguishing vowels and consonants, identifying vowel harmony, and (to

some extent) syllable structure.

Calderone (2009) used a similar approach to spectral clustering, independent component

analysis, which tries to decompose a matrix of observed data into a mixture of statistically

independent, non-Gaussian components. This resulted in a qualitative separation between

consonants and vowels, as well as suggesting some finer grained distinctions within these

sets.

Taking a different approach, Nazarov (2016) details an algorithm for jointly learning

phonological classes and constraints using a combination of maximum entropy learning and

Gaussian mixture models. Segments that are targeted by constraints that refer to a similar

context are hypothesised to form a natural class, and specific constraints are in turn combined
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into more general ones using these classes. This performs reasonably well on a simple artificial

language.

Peperkamp et al. (2006) also use distributional patterns to learn phonological information,

although here they attempt to find allophonic relationships rather than phonological classes.

They use the Kullback-Leibler divergence to identify pairs of sounds that rarely occur in

the same contexts (i.e. in complementary distribution). This is able to find true allophones

successfully, but also introduces many spurious allophones, and they must make use of a

phonetic similarity filter to rule out these cases.

Finally, models that learn phonetic and phonological classes from acoustic (e.g. Lin,

2005) and articulatory (e.g. Mielke, 2012) data have been proposed. Although the input

data differs, the techniques for finding classes used in these studies are similar to the ones

employed here. A more complete model of the learnability of phonological classes should

refer to both types of data.

The goal of this paper is to expand on the successes of previous work that has attempted

to learn phonological classes from distributional information alone (e.g. Goldsmith & Xan-

thos, 2009; Calderone, 2009; Nazarov, 2016). These methods have generally been effective in

finding a reliable distinction between consonants and vowels, and some simple partitions of

these sets (e.g. front vs back vowels in Finnish, which has vowel harmony along this dimen-

sion). Nazarov (2016) is able to learn more complex classes from a very simple toy language,

but it is unclear to what extent this generalises to natural languages. I will show that the

algorithm presented here successfully finds classes that stand in a complex relationship to

one another in an artificial language, is more successful in learning finer-grained categories

in natural languages than these past approaches, and provides a deterministic, rather than

qualitative, method for identifying classes. The basic structure of first performing vector

embedding of the sounds in a corpus followed by clustering to retrieve classes also provides

a useful general framework in which further studies of distributional learning might pro-

ceed. Finally, the code implementing this algorithm is publicly available, and researchers are

6



encouraged to use and modify it for their own purposes.2

2The source code can be found at https://github.com/connormayer/distributional learning
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CHAPTER 3

Parupa: An artificial language

Because it is not clear a priori what classes might be apparent in the distribution of a natural

language, it is useful to begin with a case where the target classes are known in advance. To

this end, I introduce an artificial language called Parupa, which has well-defined phonotactic

properties. Parupa serves as a running example throughout the paper and an initial test

case for the algorithm. Its consonant and vowel inventories are shown in Tables 3.1 and 3.2.

p t k

b d g

r

Table 3.1: Parupa consonants.

i u

e o

a

Table 3.2: Parupa vowels.

Parupa has the following distributional properties:

1. All syllables are CV.

2. Vowel harmony: words must contain only front (/i/, /e/) or back (/u/, /o/) vowels.

/a/ may occur in either case (i.e. it is transparent to harmony).

3. Words must begin with /p/ or /b/.
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4. Consonant-vowel co-occurrence restrictions: /p/, /t/, and /k/ must be followed by

high vowels or /a/. /b/, /d/, and /g/ must be followed by mid vowels or /a/. /r/ may

be followed by any vowel. In other words, the full set of consonants is only in contrast

before /a/.

These particular properties were chosen to include multiple, overlapping partitions of the sets

of vowels and consonants. For example, the vowel set is partitioned in two different ways:

high-mid, and front-back. This structure is common in natural languages, and introduces

challenges for many clustering algorithms (see Chapter 5). Given these properties, the

algorithm should retrieve the classes shown in Figure 3.1.

Figure 3.1: The phonological classes of Parupa.

A language corpus was generated using a Hidden Markov Model, shown in Figure 3.2.

Although all emission and transition probabilities for any state were equal, the phonotactic

constraints meant that not all segments were equally common in the corpus (e.g. /a/ was

the most frequent vowel). The generated corpus had 50k word tokens, which resulted in a

total of about 18k word types. The input to the algorithm that will be described consists

only of the word types.1 The average word length was three syllables. Examples of Parupa

words are shown in Table 3.3.

I will use Parupa as a running example throughout the rest of the paper to illustrate the

performance of the various components of the algorithm.

1Consistent with previous phonological modeling done over corpora like Bybee (1995), type frequency
produces more interpretable results than token frequency, and is used throughout. In other words, the
corpora employed are dictionary-like lists of word types rather than texts containing multiple word tokens.
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ε: 1start

b: 1

p: 1

p: 1

b: 1

i: 0.5

a: 0.5

e: 0.5

a: 0.5

p: 0.25

t: 0.25

k: 0.25

r: 0.25

b: 0.25

d: 0.25

g: 0.25

r: 0.25

u: 0.5

a: 0.5

o: 0.5

a: 0.5

p: 0.25

t: 0.25

k: 0.25

r: 0.25

b: 0.25

d: 0.25

g: 0.25

r: 0.25

ε: 1

0.2
5

0.
25

0.25

0.25

1

1

1

1

0.33

0.33

0.
33

0.33

0.33

1

1

0.33

0.33

0.3
3

0.
33

0.33

1

1

0.33

0.33

Figure 3.2: The Hidden Markov Model used to generate Parupa. Edges are labeled with

their transition probabilities, and states are labeled with their segment emission probabilities.

ε is the empty string.
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berari

pupabopa

pa

paka

boka

padoropa

bo

pakubatuda

bopu

piretiba

pabarubo

barika

Table 3.3: Some Parupa words
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CHAPTER 4

Quantifying similarity: Vector space models

This model operates under the assumption that similar sounds1 in a language should have

similar distributions. A distribution is a description of how frequently each outcome in a set

of possible outcomes is observed in a data set. In this case, the outcomes we are interested

in are the contexts in which a sound occurs: i.e. the other sounds that occur near it.

To generate distributions for each sound, I adopt vector space modelling (e.g. Manning

& Schütze, 1999; Jurafsky & Martin, 2008). The principle behind this approach is to rep-

resent objects as vectors or points in an n-dimensional space whose dimensions reflect some

of their properties. Embedding objects in a vector space allows for convenient numerical

manipulation and comparison between them.

This approach is commonly applied in many language-related domains: in document

retrieval, where documents are represented by vectors whose dimensions reflect words that

occur in the document; in computational semantics, where words are represented by vectors

whose dimensions reflect other words that occur near the target word; and in speech/speaker

recognition, where sounds are represented by vectors whose components are certain acoustic

parameters of the sound. This is also essentially the approach taken by many of the papers

discussed in the previous chapter, where sounds are represented as vectors whose dimensions

reflect the counts of sounds that occur near them. Whether we are dealing with documents,

words, or sounds, the projection of these objects into a vector space should be done in such

a way that similar objects end up closer in the space than less similar ones.

An important distinction between applying this approach to documents or words and

1I intentionally use the word “sounds” rather than “phonemes” or “phones” because this model is inde-
pendent of the level of transcription used in the corpus.
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applying it to sounds is that order is crucially important for sounds. When considering the

semantics of words or documents, it is generally more useful to know that a word occurs in

a document or that a word occurs near another word than it is to know that a word is the

nth word in a document, or that a word occurs exactly n words before another word. In

contrast, ordering is crucial for phonology, since adjacency and directionality play important

roles in phonological processes.2

The methods I use here combine aspects of the approaches described above. Before going

into more detail, I will first provide a simple, concrete example of how we can go from a

phonological corpus to a vector representation of each sound in the language.

4.1 A simple vector embedding of sounds

Suppose we have a language with only two sounds, /t/ and /a/, and a corpus containing the

following five words:

ta, ata, tata, atta, taa (4.1)

Σ is the set of all unique symbols in the corpus, plus the special symbol #, which

represents a word boundary.3 Here Σ = {t, a,#}.

To go from this corpus to a vector space representation of each of the sounds, we must

decide how we want to define the dimensions of the resulting vector space: i.e. which aspects

of context we wish to be sensitive to, and how to quantify these aspects. For this simple

example, I will define each dimension in the space as the number of times a particular

symbol occurs immediately before the target symbol. That is, the corresponding vector for

each symbol in Σ (except for #) consists of dimensions with labels si , where indicates

the position of the target sound (the sound whose vector we are constructing), si ranges over

2Not all aspects of ordering are important for phonology: knowing that a sound is the third sound in a
word is not generally useful, although knowing that a sound is first or last in a word can be.

3For clarity, I omit word boundaries in the presentation of the data here.
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Σ, and the value of each element is the number of times si occurs before the target sound in

the corpus.4 In general when discussing vectors, I will use to indicate the position of the

target sound, and s with subscripts to indicate sounds in the context.

The resulting count vectors under this definition are shown in Table 4.1.

t a #

t 1 3 3

a 6 1 2

Table 4.1: Count vectors for a toy language.

For example, the cell in the bottom left corner of this table has the value 6 because /a/

occurs after /t/ six times in the corpus. Note that although these sounds have overlapping

distributions, these vectors capture the general pattern of alternation between the two. It is

straightforward to see how these counts can be interpreted as points or vectors in 3D space,

where t = (1, 3, 3) and a = (6, 1, 2).

4.2 What do we count when we count sounds?

The previous example counts the sounds that occur immediately preceding the target sound.

This is not likely to be informative enough for identifying phonological classes in anything

but the simplest languages. There are many other ways we might choose to count contexts.

Here I adopt trigram counting, which counts all contiguous triples of sounds that contain

the target sound. Thus our dimension labels will be of the form sisj , si sj, and sisj,

where si and sj range over Σ. Under this counting scheme, the number of dimensions is

3|Σ|2, where Σ includes the word boundary symbol. A discussion of the limitations of this

counting scheme and some other possibilities will be presented in Chapter 9.

4These dimension labels should be considered analogous to the convention of using the labels x, y, and z
to refer to the axes in 3-dimensional space.
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4.3 Weighting counts

Raw counts tend to not be particularly useful when dealing with vector embeddings of

words, because many different types of words can occur in the same contexts (e.g. near

the or is). A common technique is to somehow weight the counts, such as by converting

them to probabilities, conditional probabilities, or more sophisticated measures. Weighting

proves to be valuable for sounds as well. The basic assumption I make is that the most

fundamental partition of the sounds in any language should be between consonants and

vowels (or alternatively, sounds that occupy syllable nuclei and sounds that do not). A

suitable weighting method should make this distinction apparent. Of the weightings tested,

only Positive Pointwise Mutual Information (PPMI) was able to consistently produce a clean

distinction between consonants and vowels across data sets.

PPMI is an information theoretic measure that reflects how frequently a sound occurs in

a context compared to what we would expect if sound and context were independent (Church

& Hanks, 1990). It is defined as follows

PPMI(s, c) = max(log2
Pr(s, c)

Pr(s)Pr(c)
, 0) (4.2)

where s is a sound and c is a context. The calculations for the three probabilities in the

equation are given below, where a token is a particular occurrence of a sound.

P (s) =
# of tokens of s

total # of tokens
(4.3)

P (c) =
# of tokens in context c

total # of tokens
(4.4)

P (s, c) =
# of tokens of s in context c

total # of tokens
(4.5)

These values are easily computable from a corpus.

If Pr(s) and Pr(c) are independent, then Pr(s, c) ≈ Pr(s)Pr(c) and hence the value of

the inner term log2
Pr(s,c)

Pr(s)Pr(c)
will be close to 0. If P (s, c) occurs more frequently than the
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individual probabilities of s and c would predict then the value will be positive, and if P (s, c)

occurs less frequently than expected, then this term will be negative.

PPMI converts all negative values of the inner term to 0 (as opposed to Pointwise Mutual

Information, which does not (Fano, 1961)). This is desirable when dealing with words rather

than sounds, because the size of the vocabulary often requires an unreasonable amount of

data to distinguish between words that tend not to co-occur for principled reasons and words

that happen not to co-occur in the corpus (e.g. Dagan et al., 1993; Niwa & Nitta, 1994).

Although this seems as though it should be less of a concern with phonological data given the

relatively small number of sounds, in practice PPMI appears to provide more interpretable

results than PMI on the data sets examined here.5

Table 4.2 shows the count vectors from the toy corpus in the previous section converted

to PPMI. The vectors have been smoothed, in a sense, with the separation between the two

on each dimension becoming even more pronounced.

t a #

t 0 0.78 0.46

a 0.61 0 0

Table 4.2: Count vectors for a toy language weighted using PPMI.

5This result appears to be at odds with the centrality of markedness constraints in phonological theory.
I suspect that, as for words, the number of coincidentally unattested sequences of sounds overwhelms the
number of sequences that are prohibited by markedness constraints or the like. For example, the English
CMU pronouncing dictionary is transcribed using 39 phonemes, and contains 27,209 words of length six.
There are 396 = 3, 518, 743, 761 possible words of length six that could be generated from an inventory of
39 phonemes. This means that attested six sound words only make up about 0.0007% of possible six sound
words. Because there are so many unattested sequences, it may be the case that it is more informative to
know where sounds do occur than where they do not. I leave a detailed exploration of this as a topic for
future research.
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4.4 PPMI Vector Embeddings of Parupa

A challenge in dealing with high dimensional spaces is visualizing the data. Here I use

Principal Component Analysis (PCA) (Hotelling, 1933), which projects points in a space

onto a smaller set of dimensions, called principal components (PC), such that the variance

of the projected data is maximised. This technique is useful for reducing high dimensional

spaces to two or three dimensions so they can be visualised. It will also be of crucial

importance in the clustering stage described in Chapter 5, and a more detailed description

will be given there.

Figure 4.1: A PCA visualization of the vector embedding of Parupa consonants and vowels

using trigram counts and PPMI weighting.

Figure 4.1 shows a two-dimensional PCA visualization of the vector space embedding of

Parupa using trigram counts and PPMI weighting. Here we can see that the vowel/consonant

distinction is clear along PC1, and vowel height is reflected on PC2.6

6The reader should keep in mind that referring to a phonetic property here is a shorthand for referring
to particular aspect of the distribution, since there is no notion of phonetic substance in this model.
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Figure 4.2: A PCA visualization of the vector embedding of Parupa consonants using

trigram counts and PPMI weighting.

Figure 4.3: A PCA visualization of the vector embedding of Parupa vowels using trigram

counts and PPMI weighting.
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Figures 4.2 and 4.3 show PCAs generated with only consonants and only vowels respec-

tively. For the consonants, the distinction between sounds that must precede high vowels

and sounds that must precede mid vowels is reflected in PC1, while the distinction between

sounds that can begin a word and sounds that cannot is reflected in PC2. For the vow-

els, the height distinction is reflected on PC1, while the backness distinction is reflected on

PC2. Note the intermediate position of /r/ and /a/ in the plots, reflecting their shared

distributions within the consonant and vowel classes.

PCA visualizations must be interpreted with caution, since they generally lose informa-

tion present in the full space. In the simple case of Parupa, however, it seems clear that there

should be sufficient information in the vector embedding to retrieve the intended classes.

19



CHAPTER 5

Finding classes using PCA and k-means clustering

Once we have vector space embeddings of the sounds in our corpus, we need a way to extract

phonological classes from the space. It is intractable to consider every possible set of classes,

since given an alphabet Σ, there are 2|Σ| possible classes, and hence 22|Σ|
sets of classes that

could be chosen. One approach to generating a reasonable set of candidate classes is using

clustering algorithms. Broadly speaking, such algorithms attempt to assign each point in a

data set to one or more clusters, such that the points in each cluster have more in common

with other points in the cluster by some criterion than with points outside of the cluster.

Many clustering algorithms with different properties and assumptions have been pro-

posed,1 but the nature of the problem of finding phonological classes imposes several restric-

tions on the type of algorithm that should be used.

1. It must be unsupervised, meaning that the algorithm requires no access to training

data (i.e. sounds that have already been assigned to classes).

2. It must not require the number of classes to be specified in advance.

3. It must allow multiple class membership. This is analogous to saying that it must allow

a set of sounds to be partitioned in multiple ways. In Parupa, for example, /i/ patterns

as both a front vowel and a high vowel.

4. Distributional evidence for class membership may be present only in some contexts.

For example, the high/mid vowel distinction in Parupa is signaled only by the preceding

consonant, while the front/back distinction is apparent only from the preceding and

1See e.g. Aggarwal and Reddy (2013) for an overview.
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following vowels. A suitable clustering algorithm should be able to look at meaningful

subsets of all contexts when clustering sounds.

There are clustering algorithms that meet these criteria, particularly certain subspace

clustering algorithms (e.g. Müller et al., 2009), but properties of the data considered here

make them difficult to apply for practical reasons. First, these algorithms are generally

difficult to parameterise in a principled way, requiring assumptions about the number of

clusters or the distributional properties of the data. Second, phonological data by definition

has no outliers (i.e. all sounds should be clustered), but many common clustering algorithms

assume their presence. Finally, our data consist of a small number of points, one per sound,

and a large number of dimensions, one per context. Most clustering algorithms are optimised

to handle the opposite situation well, and this leads to severe efficiency issues.

In light of these problems, I propose a clustering technique that is well suited to this

task. It works by recursively applying Principal Component Analysis and one-dimensional

k-means clustering. The next sections will show that this combination allows for multiple

partitions of the same set of data, while simultaneously exploiting the generally hierarchical

structure of phonological classes.

5.1 Principal Component Analysis

Principal Component Analysis is a dimensionality reduction technique. I will not describe

its formal properties here, but treatments of it can be found in almost any introductory

statistics textbook (I use Everitt & Dunn, 2001). It takes a matrix consisting of some number

of (possibly correlated) dimensions and reduces it to a set of new, uncorrelated dimensions

called principal components. These principal components are linear combinations of the

original dimensions. The number of principal components is min(m − 1, p), where m is

the number of rows in the data set and p is the original number of dimensions. Principal

components are ordered descending by proportion of variance captured, with PC1 capturing

the most variance, followed by PC2, and so on. This has several useful consequences:
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1. To reduce a data set to n dimensions while minimizing the amount of information lost,

we can simply choose the first n principal componentss.

2. Because we know how much variance each principal component captures, we can choose

the number of new dimensions using a variance-based criterion. This could be choosing

the number of dimensions required to capture some percentage of the original variance,

or choosing only dimensions whose variance contribution exceeds some threshold.

We can run PCA on a matrix whose rows are the vector embeddings of individual sounds

in a corpus. PCA is useful for clustering phonological data for several reasons: first, because

our matrix consists of few rows and many dimensions, its dimensions are highly correlated.

Applying PCA reduces the matrix to a set of uncorrelated dimensions, which makes inter-

pretation more straightforward. Second, PCA helps to highlight robust sources of variance

while reducing noise. Finally, the resulting principal components provide some insight into

the different ways to partition a set of sounds. Consider again Figure 4.3. PC1, which cap-

tures the largest proportion of the original variance, shows the distinction between high and

mid vowels while revealing little about the front/back vowel distinction. This distinction is

apparent in PC2, however. Thus looking at different principal components has the potential

to expose multiple ways to partition a single set of sounds.

5.2 k-means clustering

Given a principal component, we would like to determine how many classes the distribution

of sounds suggests. In Figure 4.2, for example, a visual inspection suggests PC1 should be

grouped into three classes: {b,d,g}, {r}, and {p,t,k}, while PC2 should be grouped into two

classes: {b,p} and {d,g,r,k,t}. k-means clustering can be used to optimally group a set of

points into k clusters by finding cluster centers and assigning points to clusters in such a way

that the total distance from each point to its cluster center is minimised (MacQueen, 1967).

In order to determine the optimal value of k, information theoretic measures such as the

Akaike Information Criterion (AIC) (Akaike, 1974) or Bayesian Information Criterion (BIC)
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(Schwarz, 1978) can be used. These measures attempt to strike a balance between model

complexity and model fit by penalizing more complex models (in this case, higher values of

k) while rewarding fit to the data (in this case, distances from the cluster centers).

Because we are clustering on principal components which are one-dimensional, I use the

Ckmeans algorithm (Wang & Song, 2011), which is an optimization of the standard k-means

algorithm for one-dimensional data. This algorithm efficiently finds the optimal number of

clusters using the BIC as an evaluation metric. When applied to PC1 and PC2 of the set

of consonants discussed in the previous paragraph, this algorithm finds exactly the expected

classes: namely {b,d,g}, {r}, and {p,t,k} on PC1, and {b,p} and {d,g,r,k,t} on PC2.

Readers familiar with clustering techniques might find it odd that clustering is done

over single principal components rather than all dimensions, whether these be the original

dimensions representing specific contexts, or the reduced dimensions after PCA is performed.

This is a sensible choice because of the properties of vector embeddings of sounds in a

phonological corpus and the nature of phonological classes in general.

First, as mentioned earlier, the columns in the vector space are massively redundant.

Each principal component in a PCA can be thought of as an aggregation of the information

in a correlated set of columns in the original data. Put another way, PCA does some of the

work of finding meaningful subspaces of the vector space over which clustering is likely to be

effective, and thus each principal component can be thought of as representing some number

of dimensions in the original space.

Additionally, clustering over individual principal components rather than sets of principal

components allows us to find broad classes in the space that might otherwise be overlooked.

This is apparent when examining Figure 4.3: clustering over PC1 and PC2 separately allows

us to find distinct partitions of the vowel space based on height and on backness. If PC1

and PC2 were considered together, the only likely clusterings would be either a single cluster

containing all vowels, missing the class structure completely, or one cluster per sound. The

latter is equivalent to finding classes that reflect the intersections of different height and

backness values, but overlooks the broader class structure from which these subclasses are
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generated. Finding such classes is a property that many subspace clustering algorithms have,

but, as described above, many of these algorithms are unsuited to this type of data for a

variety of reasons. Clustering over single principal components is simple way to achieve this

property while circumventing many of these issues.

5.3 Recursively traversing the set of classes

The final component of this clustering algorithm leverages the generally hierarchical nature of

phonological classes. In many cases a distinction is only relevant to segments in a particular

class: for example, the feature
[

+/− strident
]

is only relevant for coronal fricatives and

affricates. Expressed in a slightly different way, patterns that do not contribute a great deal

to the variance of the entire set of sounds might become more apparent when only a subset

of the sounds is considered. In order to exploit this hierarchical structure, this clustering

algorithm is called recursively on the sets of classes that are discovered on each principal

component.

5.4 Putting it all together

To summarise, this algorithm runs Principal Component Analysis on a matrix of vector

embeddings of sounds and attempts to find clusters on the most informative principal com-

ponents. For each cluster found, the algorithm is recursively applied to that cluster to find

additional subclusters. Considering multiple principal components for each set of sounds has

the potential to partition every set of sounds in multiple ways, and the recursive character

allows it to exploit the generally hierarchical nature of phonological classes to discover more

subtle class distinctions.

The steps of the algorithm and the necessary parameters are detailed below:

1. Initially use the original vector embedding matrix as input data.

2. Perform Principal Component Analysis on the input data.
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3. For each principal component, PCi, where 1 ≤ i ≤ n:

(a) Cluster the sounds on PCi into between 1 and k clusters.

(b) If more than one cluster is found, run this algorithm again on each cluster (i.e. re-

turn to step 2), using as input data only the rows of the original vector embedding

matrix corresponding to the sounds found in the cluster.

4. Return the clusters that were found by this and all recursive calls.

The two parameters that must be set here are n, the number of principal components we

consider for each input, and k, the maximum number of clusters we attempt to partition

each principal component into.

k is relatively easy to choose if we assume the typical properties of phonological feature

systems, where a class is either +, −, or 0 (unspecified) for a particular feature. This suggests

we should partition each principal component into either one (no distinction), two (a +/−

or +/0 distinction, as in PC2 in Figure 4.2), or three (a +/−/0 distinction, as in PC1 in

Figure 4.2). Thus, setting k = 3 seems like a principled choice.

When choosing n, we want to select only those principal components that are informative

about meaningful phonological classes. If n is too high, principal components that contain

mostly noise will be included and result in spurious classes being detected. If n is too low,

important classes may be overlooked. There have been many proposals for how to choose

the number of components to consider (see e.g. Section 3.5 in Everitt & Dunn, 2001). Here I

use the relatively simple Kaiser stopping criterion (Kaiser, 1958), which suggests taking only

the principal components that account for above-average variance (i.e. whose eigenvalues

are greater than the average of the eigenvalues of all principal components). This criterion is

simple to calculate and works well in practice here. In general, however, the choice of which

components to use should be thought of as a parameter that might be tuned for different

purposes (e.g. we might want to consider less robustly-attested classes with the intention

of later evaluating them on phonetic grounds). Increasing or decreasing the number of

components used has the effect of increasing or decreasing the algorithm’s sensitivity to
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noise, and determines how robust a pattern must be to be retrieved.2

In the next chapter, I present the results on Parupa to illustrate the algorithm’s effec-

tiveness.

2It may be the case that this parameter can be chosen based on phonological criteria by looking at how
many different partitions of a single set of sounds are typical in natural languages. I leave this as a topic for
future research.
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CHAPTER 6

Running the algorithm on Parupa

Running the algorithm on the Parupa vector embeddings detailed in Chapter 4 produces the

classes in Table 6.1:

{a, i, u, e, o} {p, t, k, b, d, g, r}

{i, u} {b, d, g}

{e, o} {p, t, k}

{i, e} {p, b}

{u, o} {d, g, k, r, t}

{a} {d, g}

{k, t}

{p}

{b}

{r}

Table 6.1: Classes learned from Parupa. Bolded classes indicate predicted classes.

All the expected classes are present in this set, and although there are additional classes,

these are derivable from the expected classes: e.g. {d,g,k,r,t} is the class of non-word-initial

consonants, {d,g} is the class of non-word-initial consonants that can precede mid vowels,

{k,t} is the class of non-word-initial consonants that can precede high vowels, etc. The

hierarchical relationship between these classes is shown in Figure 6.1, which was generated

using code from Mayer and Daland (in preparation). These diagrams are used throughout

the paper, and do not reflect the order in which the classes were retrieved by the algorithm:
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rather, they arrange the classes in a hierarchical structure, where arrows between classes

represent a parent-child relationship (i.e. the child class is a proper subset of the parent

class, and there is no other class that intervenes between the two). Dotted arrows indicate

that a class is the intersection of two or more parents. In essence, this diagram gives a sense

of the overall relationship between the classes retrieved by the algorithm, rather than the

path the algorithm took to retrieve the classes.

Note that the singleton classes consisting of individual segments are not in general re-

trieved by the algorithm. This is the consequence of the k-means clustering component

deciding that no partition of a class into two or three classes is warranted. This is not of

great concern, however, since the assumption of a segmental representation necessarily im-

plies that singleton classes are available to the learner. These may simply be appended to

the list of retrieved classes if so desired.

Figure 6.1: The classes retrieved from Parupa. Arrows indicate a parent/child relationship

between classes. Dotted arrows indicate that a class is the intersection of two or more

parents.

This algorithm performs well on Parupa, successfully retrieving all of the intended classes,

including those that involve partitioning sets of sounds in multiple ways.
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6.1 Evaluating the robustness of the algorithm on Noisy Parupa

Parupa is a pathologically tidy language: its phonotactic constraints are never violated.

Although the algorithm does well on retrieving the class structure to which these constraints

are sensitive, no natural language is so well behaved. In order to evaluate how well the

algorithm described above handles noise, I examine its performance on a more unruly variant

of Parupa: Noisy Parupa.

Noisy Parupa is identical to Parupa, except that some percentage of the generated word

tokens are noisy : they do not conform to the phonological restrictions outlined in Chapter 3.

These words still maintain a CV structure, but the consonants and vowels in each position

are chosen with uniform probability from the full sets of consonants and vowels. A Hidden

Markov Model for generating noisy words is shown in Figure 6.2. Transition probabilities

were chosen so that the average word length is still three syllables.

p: 1/7

t: 1/7

k: 1/7

b: 1/7

d: 1/7

g: 1/7

r: 1/7

start

i: 1/5

e: 1/5

u: 1/5

o: 1/5

a: 1/5

ε: 1

1

0.33

0.66

Figure 6.2: The Hidden Markov Model used to generate Noisy Parupa words. Edges are

labeled with their transition probabilities, and states are labeled with their segment emission

probabilities. ε is the empty string.

A parameter determines what percentage of the words are noisy. Standard Parupa can be

thought of as a special case where this parameter is set to 0. As the value of this parameter

increases, the algorithm should have more difficulty finding the expected phonological classes.

The model was tested on 110 corpora. The noise parameter was varied from 0% to 100%

in increments of 10%, and ten corpora were generated for each parameter value.

Figure 6.3 shows the median number of expected and unexpected classes found by the
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Figure 6.3: A plot of the median number of expected and unexpected classes found by the

algorithm as the percentage of noisy words increases. Error bars span the minimum and

maximum number of classes retrieved from a corpus at that noise level.

algorithm as the percentage of noisy words increases.1 The expected classes are defined as

exactly the classes in Figure 3.1. The number of unexpected classes varies as the specific

properties of the corpus change, but the number of expected classes found remains reasonably

high until 100% noise. From 40% to 70% noise, the expected classes that are not detected

are either {k,p,t}, {b,d,g}, or both. In about half the cases (19/40) the unexpected classes

include {k,p,t,r} and/or {b,d,g,r}. In 20 of the remaining 21 cases, the sets {p,t} and/or

{b,g} are recovered. This indicates that the pattern is still detected to some extent, although

the participating classes are less clear due to the increase in noise.

From 80% to 90% noise, the algorithm reliably fails to detect the classes {k,p,t} and

{b,d,g}, while occasionally also overlooking other classes: {b,p} (4/20), {o,u} (3/20), {i,u}

1The mean number of classes was similar.
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(1/20), and {e,o} (1/20).

Finally, at 100% noise, the consonants and vowels are the only classes reflected in the

distribution, and these are successfully retrieved in all cases. The other expected classes that

are sometimes retrieved are the result of chance.

The results of the algorithm on Noisy Parupa suggest that it is fairly robust to noise. All

expected classes are discovered in up to 30% noise, and even up to 90% noise most of the

expected classes are still found. Even when expected classes are lost at higher noise levels,

these are often still reflected in aspects of the unexpected classes that are found.

In the next section I examine the results of the algorithm on several natural language

corpora.
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CHAPTER 7

Testing the algorithm on real language data

In this chapter I show how the algorithm performs on several real languages: Samoan,

English, French, and Finnish. In all cases the vector embeddings were done using trigram

counts and PPMI weighting. I make several simplifying assumptions when dealing with

the data in this chapter: first, I restrict the initial partition of the data to only use the

first principal component and to partition this principal component into only two classes.

Assuming that the most obvious partition of the full set of sounds is between consonants

and vowels, this is equivalent to stipulating that the first partition of a phonological corpus

must be into these two categories, and that subclasses must be contained entirely in the set

of vowels or the set of consonants. This potentially misses certain classes that span both sets

(like the class of
[

+voice
]

sounds, or classes containing vowels and glides, such as {i,j}

and {u,w}, for example), but greatly reduces the number of classes generated and facilitates

interpretation.

Second, I occasionally change the parameter that determines how many principal com-

ponents of a class are considered. Recall that the default is to cluster only on principal

components that account for a greater than average proportion of the variance in the data. I

scale this by multiplying it by a factor (so e.g. we might only consider principal components

that account for two times the average variance). This is useful because of the varying dis-

tributional noise present in real data. All classes returned with a higher threshold will also

be returned when the threshold is lowered. I leave the question of whether there is a more

principled way to determine this threshold as a topic for future research.

I evaluate the algorithm’s performance by inspecting the discovered classes and comparing

them to classes that have been proposed by linguists to describe that language’s phonology.
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7.1 Samoan

The Samoan corpus was generated from a Samoan dictionary (Milner, 1993) and contained

4226 headwords.1 This is an orthographic representation of Samoan, but there is a close

correspondence between orthography and pronunciation. Symbols have been converted to

IPA for clarity. Figures 7.1 to 7.3 visualise the vector embedding of Samoan.2

Figure 7.1: A PCA of the vector embedding of Samoan.

The retrieved classes are shown in Figure 7.4. The algorithm was able to successfully

distinguish between consonants and vowels. It also makes a rough distinction between long

and short vowels, although /a:/ is grouped with the short vowels. Finally, the set of short

vowels and /a:/ is split into low and non-low, while the set of long vowels is partitioned and

high and mid sets. There does not appear to be sufficient distributional information to make

any partitions of the set of consonants. Lowering the variance threshold for which principal

1Thanks to Kie Zuraw for providing this data.

2Note that /h/ was successfully classified as a consonant despite appearing somewhat intermediate in
the plot. /h/ is a rare phoneme in Samoan, only appearing in loanwords. In the corpus used here, only
four words contained /h/, and each of these had /h/ in initial position. This limited the range of available
contexts and made the distinction between consonant and vowel less clear than for other sounds.
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Figure 7.2: A PCA of the Samoan consonants.

Figure 7.3: A PCA of the Samoan vowels.

components to consider did not result in more classes being learned.

The patterning of /a:/ with the short vowels can be explained by examining its distribu-
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tion. While VV sequences are quite common in Samoan (1808 occurrences in the corpus),

VV:, V:V, and V:V: sequences are rarer (226 total occurrences). In 171 of these 226 oc-

currences, the long vowel is /a:/. Thus /a:/ patterns more like a short vowel than a long

vowel with respect to its distribution in vowel sequences, and the algorithm reflects that in

its discovered classes. This is an example of a class that cannot be captured using phonetic

features, but is valid in the sense that it is salient in the distribution of the language.

Figure 7.4: Retrieved classes from Samoan. Arrows indicate parent/child relationships.

To examine whether the trigram window is too small to capture information that might

allow the consonants to be grouped, I also ran the algorithm on Samoan with the vowels

removed. This should allow the algorithm to better capture any word-level co-occurrence

restrictions that might differentiate groups of consonants (e.g. McCarthy, 1986; Coetzee &

Pater, 2008). A PCA of the resulting vector embedding of the Samoan consonants is shown

in Figure 7.5.

In order to reduce noise, I ran the clustering algorithm on this data with a scaling factor

of 1.2 on the variance threshold (i.e. only principal components with at least 1.2 times

the average variance were considered). The constraint that the initial partition of the set

of sounds must be in two was also removed, because the consonant/vowel distinction is no

longer relevant for this data set. This resulted in the classes shown in Figure 7.6. Here

35



Figure 7.5: A PCA of the Samoan consonants from a corpus without vowels.

/r/ and /k/ are clearly set apart from the other consonants. These sounds are relatively

uncommon in Samoan, being found predominantly in loanwords, and this is reflected in their

distribution. Aside from the marginal status of /k/ and /r/ in Samoan phonology, it has hard

to justify these classes in a linguistically satisfying way. The additional classes found when

the variance threshold was lowered were similarly arbitrary. This suggests that consonant

co-occurrence restrictions reflect little more than the special status of /k/ and /r/. Samoan

is known to have phonotactic restrictions on root forms (e.g. Alderete & Bradshaw, 2013),

and it is possible that running the algorithm on roots rather than headwords would make

these patterns more detectable.

Given Samoan’s strict (C)V phonotactics, it is perhaps not surprising that distribution

yielded few distinctions in the set of consonants. I turn now to English, where the pres-

ence of consonant clusters may give us a better chance of retrieving additional phonological

information.
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Figure 7.6: Retrieved classes from Samoan with no vowels. Arrows indicate parent/child

relationships.

7.2 English

The English corpus was generated from the CMU pronouncing dictionary,3 which is phone-

mically transcribed. Only words with a frequency of at least 1 in the CELEX database

were included (Baayen et al., 1995), and some manual error correction was performed.4

The resulting corpus consisted of 26,552 word types. Figures 7.7 to 7.9 visualise the vector

embedding of English.

To reduce noise, I ran the clustering algorithm with a scaling factor of 1.1 on the variance

threshold. The retrieved classes are shown in Figure 7.10. The sets of vowels and consonants

are correctly retrieved. Within the consonants, there is an eventual distinction betwen the

class of coronal obstruents, nasals, and /v/, and all other consonants. The class of velar

obstruents {k,g} is recovered, as well as the class of labial obstruents {p,b,f} minus /v/, and

the set of labial approximants {r,w}. The vowels are more difficult to interpret, but there

are splits that are suggestive of the tense vs. lax distinction.

3http://www.speech.cs.cmu.edu/cgi-bin/cmudict

4See http://linguistics.ucla.edu/people/hayes/EnglishPhonologySearch
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Figure 7.7: A PCA of the vector embedding of English.

Figure 7.8: A PCA of English consonants.

In a language like Samoan, with a small number of sounds and extremely restricted

syllable structure, it is relatively simple to identify the specific distributional properties
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Figure 7.9: A PCA of English vowels.

that lead to a particular class being detected. More phonotactically complex languages

like English are not so simple. It would be interesting to investigate what aspects of the

distribution led to the detection of the classes found here, but I leave this as a topic for

future research.

I turn now to French, a language with similarly complex phonotactics to English.
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7.3 French

The French corpus is the same as the one used in Goldsmith and Xanthos (2009).5 It consists

of 21,768 word types in phonemic transcription. Figures 7.11 to 7.13 visualise the vector

embedding of French.

Figure 7.11: A PCA of the vector embedding of French.

The clustering algorithm was run with a scaling factor of 2 on the variance threshold.

The retrieved classes are shown in Figure 7.14. The sets of consonants and vowels are

correctly retrieved. Within the consonants, there is a clean split between approximants and

non-approximants, and, within the approximants, between liquids and glides. The glides are

further split into rounded and unrounded glides. The vowels are more difficult to interpret,

but there is a general split between nasalised vowels and vowels with unmarked roundness

on one hand, and the remaining vowels on the other (/y/, /e/, and /@/ are the exceptions).

Again, I leave an enumeration of the distributional properties that characterise these classes

as a topic for future research.

5Thanks to John Goldsmith for this data.
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Figure 7.12: A PCA of French consonants.

Figure 7.13: A PCA of French vowels.
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Figure 7.14: Retrieved classes from French. Arrows indicate parent/child relationships.
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7.4 Finnish

Finnish is a central example used in Goldsmith and Xanthos (2009). The Finnish vowel har-

mony system is sensitive to three classes of vowels: the front harmonizing vowels {y,ö,ä} (IPA:

{y,ø,æ}), the back harmonizing vowels {u,o,a}, and the transparent vowels {i,e}. Words tend

not to contain both front and back harmonizing vowels, and the transparent vowels can co-

occur with either class. Goldsmith and Xanthos show that both spectral clustering and

hidden Markov models are able to detect these classes (though see Chapter 8 for additional

discussion).

Because the corpus used in Goldsmith and Xanthos (2009) is not publicly available, I use

a corpus generated from a word list published by the Institute for the Languages of Finland.6

Finnish orthography is, with a few exceptions, basically phonemic, and so a written corpus

serves as a useful substitute for a phonemic corpus. Words containing characters that are

marginally attested (i.e. primarily used in recent loanwords) were excluded.7 This resulted

in a total of 93,821 word tokens. Long vowels and geminate consonants were represented as

VV and CC sequences respectively.

The algorithm was first run on a modified version of the corpus containing only vowels.

This mirrors the corpus used in Goldsmith and Xanthos (2009). The vector embedding of this

corpus is shown in Figure 7.15. A scaling factor of 1 was used on the variance threshold, and,

as with Samoan consonants, the restriction on the number of classes retrieved in the initial

partition was lifted. The retrieved classes are shown in Figure 7.16. The relevant harmony

classes are successfully discovered, and, consistent with the results in Goldsmith and Xanthos

(2009), the transparent vowels {i,e} pattern more closely with the back vowels than with the

front. In addition, classes suggestive of a low/non-low distinction are discovered.

The algorithm was then run on the corpus containing both consonant and vowels. The

vector embeddings are shown in Figures 7.17 to 7.19.

6http://kaino.kotus.fi/sanat/nykysuomi/

7These characters were c, x, q, z, š, ž, and å.
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Figure 7.15: A PCA of the vector embedding of the corpus consisting only of Finnish

vowels.

Figure 7.16: Retrieved classes from the Finnish corpus containing only vowels. Arrows

indicate parent/child relationships.

The clustering algorithm was run with a scaling factor of 1.2 on the variance threshold.

Consonants and vowels were successfully distinguished. Because the focus here is on vowel

harmony, and the consonant sub-classes retrieved by the algorithm are not obviously inter-

pretable (as Figure 7.18 suggests), I present only the vowel subclasses here. The retrieved
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Figure 7.17: A PCA of the vector embedding of the full Finnish corpus.

Figure 7.18: A PCA of the vector embedding of consonants from the full Finnish corpus.

vowel classes are shown in Figure 7.20.

Here the front harmonizing vowels are differentiated from the transparent and back har-
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Figure 7.19: A PCA of the vector embedding of vowels from the full Finnish corpus.

Figure 7.20: Retrieved vowel classes from the full Finnish corpus. Arrows indicate par-

ent/child relationships.

monizing vowels, although the split is not as clean as in the vowel-only corpus: the non-high

front harmonizers {ö,ä} form their own class, and only later is {y} split off from the remain-

ing vowels. In addition, the distinction between transparent and back harmonizing vowels is

not made, although the set of both is split into classes suggesting a high/non-high contrast.

The loss of clear class distinctions when consonants are added back in is a function of the
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simple trigram counting method used: because Finnish allows consonant clusters, trigrams

are not able to capture as much of the vowel co-occurrence as they need to generate the

expected classes. More will be said on this point in Chapter 9.

The algorithm presented here is able to retrieve the correct classes on the corpus contain-

ing only vowels, and retrieves classes that capture aspects of the harmony pattern when run

on the full corpus. Although the results on the vowel-only corpus seem quite comparable to

those in Goldsmith and Xanthos (2009), the next chapter will discuss why these constitute

an improvement in several ways beyond simply the classes that are retrieved.
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CHAPTER 8

Comparison with past work

A direct comparison of this algorithm to past approaches is difficult because of the lack of

a clear quantitative measure of success, the lack of publicly available implementations, and

the use of different data sets. Qualitative comparison is possible, however, particularly for

the English, French, and Finnish data sets, which are similar or identical to some of those

used by Goldsmith and Xanthos (2009) and Calderone (2009). From this perspective, the

current algorithm offers several notable improvements.

In all past approaches, except Nazarov (2016), there is no clear method for producing

multiple partitions of the same set of sounds (i.e. multiple class membership), and no

clear method to partition subsets of the segmental inventory without tailoring the input to

include only these subsets. As shown by its application to Parupa, the current algorithm is

capable of both these things. Because multiple class membership and privative specification

are important properties of most phonological characterizations of a language, these are

desirable properties.

The spectral clustering algorithm detailed in Goldsmith and Xanthos (2009) is similar

to the current approach in that it decomposes a matrix representation of the distribution

of sounds into a simple component that allows groups of sounds to be extracted. There are

several aspects in which the current algorithm outperforms spectral clustering. First, spectral

clustering is not able to produce an accurate separation of consonants and vowels in any of the

languages it is applied to (English, French, and Finnish), although they suggest performance

could be improved by considering additional contexts when generating the matrix. The

current algorithm was able to produce this separation accurately in all cases tested here.

Second, Goldsmith and Xanthos do not provide an explicit method for extracting the optimal
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number of classes from the component aside from visual inspection.

The maximum entropy hidden Markov model approach, also detailed in Goldsmith and

Xanthos (2009), performs better on the consonant and vowel distinction, accurately retriev-

ing it in English and French (Finnish is not presented). Further, it is able to identify vowel

classes that participate in harmony processes in Finnish when the input consists only of

vowels, and loosely captures a distinction between intervocalic and post-consonantal con-

sonants in French. It also provides a more deterministic method for extracting classes by

comparing the emission probabilities of segments in each state, although the translation of

these numbers into classes is still essentially the responsibility of the analyst. The algorithm

presented here performs at least as well, and, importantly, does not require the number of

classes (i.e. states of the hidden Markov model) to be specified in advance, which represents

a significant increase in robustness and generalisability.1

The independent component analysis method described in Calderone (2009) seems to be

able to distinguish between consonants and vowels, as well as suggesting the existence of

subclasses within these. Similar to spectral clustering, however, Calderone does not provide

a method for determining exactly how many classes are present: evidence for classes comes

from visual inspection of the individual components and of self-organizing maps, which use

neural networks to generate two-dimensional grid visualizations based on these components

(Kohonen, 2002).

A direct comparison with Nazarov (2016) is more difficult. The algorithm presented

there uses maximum entropy learning to induce phonotactic constraints from input data

(Hayes & Wilson, 2008), and forms classes by grouping segments together that are targeted

by constraints in similar contexts. The toy language on which it is tested contains three

phonotactic constraints that refer to a single segment (no word-final /m/), one class of

1When looking at natural language data above, I stipulated that the initial partitioning of the segmental
inventory should only consider the first principal component, and should consider only a partition of this
principal component into two classes. This may strike the reader as similar to specifying the number of
classes in advance. The crucial distinction is that this stipulation is not in general necessary for producing
the consonant/vowel distinction, but is simply used to reduce the number of other partitions of the full
inventory that are generated, and to avoid premature division into subclasses of either the consonant or
vowel classes. The exception to this is French, where rounded glides are clustered with a subset of the vowels
if the first principal component is allowed to be partitioned into three classes.
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segments (no nasals word-initially), and two classes of segments (no labials between high

vowels). The algorithm is generally successful in learning constraints that refer to classes

of sounds, although less reliably so for the final constraint involving two interacting classes.

Two things are worth noting: first, although the toy language employed has strict CVCVC

word forms, the algorithm does not appear to learn a consonant/vowel distinction. It is

unclear whether the relevant constraints are simply not reported, or if the increased size of

the relevant classes proves problematic (i.e. the number of contexts that must be generalized

over is too large). Second, the phonotactic constraints are never violated in the input data,

which means it is unclear how well the algorithm performs on more gradient cases. By

contrast, the algorithm presented in this paper can learn both large and small classes, and

functions reasonably well as noise is added.
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CHAPTER 9

Discussion and conclusion

The question of how much and what kinds of information about phonological classes can

be retrieved from distributional information is of considerable interest to phonological the-

ory. The algorithm described in this paper accurately retrieves the intended classes from an

artificial language with a reasonably complex class structure, even in the presence of dis-

tributional noise. When applied to real languages, it successfully distinguishes consonants

from vowels in all cases investigated here, and can make several interpretable distinctions

within these categories, such as a near categorical distinction between long and short vowels

in Samoan, and a distinction between glides, liquids, and nasals/obstruents in French.

Although the results may seem modest, they are encouraging considering the paucity

of the data. No recourse at all is made to the phonetic properties of the sounds, and the

representation of the data is phonemic. Integrating sensitivity to additional information such

as allophones and syllable boundaries would likely increase the performance of the algorithm

and make it more realistic regarding learning.

In a more fully realised model of phonological learning, a necessary subsequent step would

be to derive a feature system from the learned classes. This step is not treated in this paper,

but is discussed in Mayer and Daland (in preparation), where we show that, given certain

assumptions about what kinds of featurisations are allowed, a sufficient feature system is

derivable from a set of input classes. These two papers may be seen as complementary, and

as potential components of a more realistic model of phonological learnability that takes into

account other important sources of information, such as phonetic similarity and alternations.

An additional interesting result here is that distributional information is not equally

informative for all classes across all languages. Distributional information produced an in-
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terpretable partition of vowels in Samoan, but there was virtually no meaningful structure

within the class of consonants, even when vowels were removed from the corpus. Indeed,

the phonology of the language (including alternations) might not justify any such structure.

French and English, on the other hand, had more interpretable results for consonants, but

of the two, the result in French more closely matched a typical linguistic description. This

suggests that the phonotactics of any given language may refer only to a limited set of

phonological classes, and accordingly that some languages may reflect their phonotactics in

their distributions more strongly than others.

This study suggests a variety of possibilities for future research, both in terms of improv-

ing the performance of the algorithm and of more broadly exploring the role of distributional

learning in phonological acquisition.

A desirable property of the structure of the algorithm presented in this paper is that

it is modular, in the sense that the two components, vector embedding and clustering, are

essentially independent of one another, and can be modified individually. This structure, first

quantifying similarity between sounds and subsequently using clustering to extract classes,

provides a useful conceptual framework from which to approach problems of distributional

learning in phonology in general, and its modular structure lends itself to exploration and

iterative improvement.

The counting method employed in the vector embedding step is almost certainly a source

of difficulty in the results presented here. For the case of the artificial language Parupa,

trigram counts were sufficient to capture all phonological constraints in the language, and

the model performed accordingly well. It is likely the case that considering additional aspects

of context would improve performance on the real languages, although simply increasing the

size of the contexts considered in an n-gram model will lead to data sparsity issues. A

particularly interesting possibility would be to perform vector embedding using recurrent

neural networks (RNNs), which can generate vector representations of sounds without being

explicitly told which features of the context to attend to (e.g. Rodd, 1997; Mikolov et al.,

2010; Doucette, 2017). This approach may have limited explanatory value in the sense of

obscuring what aspects of the context are important, but could help to provide an upper
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bound for how much information about phonological classes is present in the context. A

potential issue with this approach is that RNNs typically require a large corpus for training,

necessitating data beyond the simple word lists used here, and making this method less

useful for languages with small or no transcribed corpora beyond simple word lists.

An additional consideration is that this algorithm makes a fairly broad pass over the

language. Meaningful distributional information about a class might be present in only very

specific contexts, and this information may be indistinguishable from noise and similarly

suppressed by PCA. A principled way of attending to specific contexts, perhaps along the

lines of Nazarov (2016), has the potential to allow more granular classes to be revealed.

Turning to more general considerations, there are many broad questions about the role of

distributional learning that could be addressed by experimental work, particularly artificial

grammar learning (AGL) experiments. Substantive bias effects (a preference for learning

phonetically coherent classes) are notoriously elusive in such studies (Moreton & Pater,

2012), which seems at odds with the hypothesis that phonological classes in real languages

should be phonetically coherent. To investigate the role of distributional learning, researchers

might perform studies that investigate whether classes that are both phonetically coherent

and highly salient in the distribution of participants’ native languages are generalised more

robustly in AGL tasks than classes that are just distributionally salient or just phonetically

coherent. In addition, it would be interesting to investigate whether distributional learning

of phonological classes is a strategy available to infants (similar to word segmentation; e.g.

Saffran et al., 1996), or if it is a higher level strategy that does not become available until

after further development.

Several current debates in phonology revolve around how great a role distributional learn-

ing plays in the acquisition and transmission of phonological structure. The algorithm pre-

sented in this paper provides some insight into what kinds of phonological information are

salient in distributional data. It is my hope that this might subsequently inform further

study of the extent to which human learners are able to integrate this information into their

phonological grammars.
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