

maxent.ot

A package for doing Maximum
Entropy Optimality Theory in R

Connor Mayer, University of California, Irvine

and
Kie Zuraw, University of California, Los Angeles

with
Adeline Tan, University of California, Los Angeles

Who this software is for

● Anyone who uses R (R Core Team 2021) and uses MaxEnt constraint grammars
(Goldwater & Johnson 2003)

● Are you tired of writing R scripts that contain comments like

leave R here and go fit MaxEnt grammar to file output4.csv

?

● Do you wish there was a way to run MaxEnt analyses from inside your R
script or R markdown file?

MaxEnt constraint grammars

● For those who don’t already use MaxEnt constraint grammars (including to
argue against them!), what are they?

● They’re a way to model variation, attaching a probability to each output
candidate in a tableau

○ by attaching a number (weight) to each constraint
● There are two main places where math happens

○ Finding the best constraint weights, given the training data
○ Seeing what the resulting model predicts, for both the training data and potentially new testing

data
● Our package allows you to do both of those (and more!) in R

Goal of this software

● Make our/your research life easier
● Make it easier to evaluate and build on each other’s work

Reproducible research (Stodden, Leisch & Peng 2014)

● Reproducibility means making it easy for someone (including your future self!)
to re-run your analysis using the same input data

○ They can check for mistakes and try out different analyses
● As much as possible, you want to run everything from one script

○ The script should take you from raw, unprocessed data…
■ e.g., a public database, or the results file that LabVanced writes when it runs your

experiment
○ … to final results, ideally including figures and text
○ See also “literate programming” (Knuth 1992)

● If you make a change, you can just press one button to re-run the script
● Typical tools

○ RMarkdown files
○ Jupyter notebooks for Python

Example of R markdown and its output
Work with markdown file in RStudio Click “knit” button to create html file (or PDF, etc.)

Benefits of reproducible research

● Easier for others to understand or build on your work
○ They can easily run and check your script
○ They can understand how to modify your script, or copy chunks of code
○ If they want to do a full replication (with new data), they can keep the analysis the same for better comparison

● Easier to return to a project after a break
○ e.g., after getting reviews back!
○ No need to hunt for multiple files or remember procedures for analysis–everything is organized in one file

● Easier to prevent, catch, and fix errors
○ All steps of the analysis are right there in the file for your inspection
○ Easy to make changes and re-run analysis

● By contrast, switching back and forth between R and an external MaxEnt tool makes it
harder to keep things tidy

○ E.g., switching to MaxEnt Grammar Tool (Hayes, Wilson & George 2009) or Excel Solver
○ When you go back to a project, you have to remember where all your stuff is, which files to use in which

program, and what settings you used or what cells you clicked

What the software can do: overview

● Read input files in MaxEnt Grammar Tool/OTSoft (Hayes & al. 2014) format
● Fit a MaxEnt model to training data
● Produce model predictions for training and test data
● Compare how well different models fit the data
● Use prior terms to encode bias or avoid overfitting (μ and σ)

Tutorial

● Download from connormayer.com/misc/amp_2022_tutorial.zip
● We’ll show you screenshots from the tutorial

http://connormayer.com/misc/amp_2022_tutorial.zip

Simple, fabricated
dataset

● Very loosely based
on Rose (2002)

● Fictionalized
acquisition of onset
consonant clusters in
French

Reading a file

● Must be in OTSoft
tableau-like format

○ Same format as MaxEnt
Grammar Tool

● Future work: make
readable from R data
frame

inputs

outputs

frequency of each
candidate

constraints

Fitting a grammar

● Function to create model is
optimize_weights()

● Then we can extract
various parts of the fitted
model

frequency of each
candidate

Looking at model predictions with predict_probabilities()
● In this case, we want want to see what model predicts for the training tableaux themselves

○ But we could also see what it predicts for a file with different tableaux
● Function shows us same tableaux as were read in, but now with predicted probabilities

○ And comparisons to observed probabilities
● This grammar treats all four words the same name of model we just fitted

Reading a new file

● New constraints that
care about stress
and sonority
○ MaxStressed
○ SSP: Sonority

Sequencing Principle
(st, sp are bad)

inputs

outputs

frequency of each
candidate

constraints

● Fit the new grammar

● And have a look
○ Now it captures both stress and sonority effects

Model comparison
● Does the full model’s better fit justify its greater complexity?
● compare_models()function will tell you, under various measures

○ Here, we show BIC
● Answer: yes

○ Full grammar’s BIC is much lower than base grammar’s
○ Also lower than an intermediate grammar that we didn’t show: MaxStress but no SSP)
○ Lower BIC means better grammar, even taking complexity into account

What about an even more complex model?

● DoTheRightThing
○ Penalizes the forms that our full model was slightly over-predicting

Yes, it fits even better…

…but the fit didn’t improve enough to justify the additional constraint

best BIC is still the “full” model (4 constraints)

Using a prior

● People who use MaxEnt typically use a prior
○ aka regularization, smoothing, bias

● Rather than optimizing log likelihood (model fit), optimize log likelihood minus
a penalty for weights that depart from their default

● You can use a very agnostic default (“weights should be zero”), which works
against overfitting

○ See Martin (2011)
● Or you can use a more content-ful default to build in phonetic and other

biases
○ See Wilson (2006), White (2017)

Gaussian prior using optimize_weights()

● In function optimize_weights, use the arguments mu_scalar and
sigma_scalar to set same bias for all constraints

○ Here we given all constraints a default weight (μ) of 0
○ And a “willingness to depart from μ” (σ) of 0.5

● You can also set different μ and σ for each constraint, or read them from a file

Additional functionality not covered here

● Save model predictions to output file
● Change parameters of optimizer
● Set a temperature parameter for predicting new data

○ Should predictions be exactly same as model predictions?
○ Or closer to 50%-50%?
○ Or closer to 100%-0%?
○ see e.g. Hayes & al. (2009)

Future plans

● Cross-validation for choosing values of μ and σ
● Read input data from R data frame
● Submit to CRAN to make it an official R package!

Reminder about where to get everything

● Package: github.com/connormayer/maxent.ot
○ But remember you can also just install it using the devtools library in R

● Tutorial: connormayer.com/misc/amp_2022_tutorial.zip

Thank you and we hope you try it out!

https://github.com/connormayer/maxent.ot
http://connormayer.com/misc/amp_2022_tutorial.zip

References

Goldwater, Sharon & Mark Johnson. 2003. Learning OT Constraint Rankings Using a Maximum Entropy
Model. In Stockholm University, 111–120.

Hayes, Bruce, Bruce Tesar & Kie Zuraw. 2014. OTSoft 2.3.3.
http://www.linguistics.ucla.edu/people/hayes/otsoft/.

Hayes, Bruce & Colin Wilson. 2008. A Maximum Entropy Model of Phonotactics and Phonotactic Learning.
Linguistic Inquiry 39(3). 379–440.

Hayes, Bruce, Colin Wilson & Ben George. 2009. Maxent Grammar Tool.
http://www.linguistics.ucla.edu/people/hayes/MaxentGrammarTool/.

Hayes, Bruce, Kie Zuraw, Zsuzsa Cziráky Londe & Peter Siptár. 2009. Natural and unnatural constraints in
Hungarian vowel harmony. Language 85. 822–863.

Knuth, Donald E. 1992. Literate Programming. Cambridge University Press.
Martin, Andrew. 2011. Grammars leak: modeling how phonotactic generalizations interact within the

grammar. Language 87(4). 751–770.
Mayer, Connor. 2021. Issues in Uyghur Backness Harmony: Corpus, Experimental, and Computational

Studies. PhD dissertation, University of California, Los Angeles
Microsoft Corporation. 2018. Microsoft Excel. Software.

References

Moore-Cantwell, Claire & Joe Pater. 2016. Gradient exceptionality in Maximum Entropy Grammar with
lexically specific constraints. Catalan Journal of Linguistics 15. 53–66.

Prince, Alan & Paul Smolensky. 2008. Optimality Theory: Constraint Interaction in Generative Grammar.
John Wiley & Sons.

R Core Team. 2021. R: a language and environment for statistical computing. Vienna: R Foundation for
Statistical Computing. www.R-project.org.

Rose, Yvan. 2002. Relations between segmental and prosodic structure in first language acquisition. Annual
Review of Language Acquisition. John Benjamins 2(1). 117–155.

Stodden, Victoria, Friedrich Leisch & Roger D Peng (eds.). 2014. Implementing Reproducible Research
(Chapman & Hall/CRC The R Series). Boca Raton, FL: Chapman and Hall/CRC.

White, James. 2017. Accounting for the learnability of saltation in phonological theory: A maximum entropy
model with a P-map bias. Language. Linguistic Society of America 93(1). 1–36.

Wilson, Colin. 2006. Learning Phonology With Substantive Bias: An Experimental and Computational Study
of Velar Palatalization. Cognitive Science 30(5). 945–982.

Zuraw, Kie & Bruce Hayes. 2017. Intersecting constraint families: An argument for harmonic grammar.
Language. Linguistic Society of America 93(3). 497–548.

