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This paper presents maxent.ot, a package for doing phonological analysis using Maximum Entropy
Optimality Theory written in the statistical programming language R. R has become the de facto standard
for doing statistical analysis in linguistic research, and this package allows phonologists to create and
disseminate MaxEnt OT analyses in R. A central goal of the package is to support reproducible research
and to allow the crucial components of a MaxEnt analysis to be performed conveniently and with only a
basic knowledge of R programming. The paper first presents a tutorial on MaxEnt constraint grammars
and how to use maxent.ot to perform a simple analysis. We then turn to more advanced features of
the package, including model comparison, regularization, and cross-validation.
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1 Introduction: Why this package?

1.1 The problem of switching out of an analysis script

If your research includes any kind of quantitative, computational, or statistical component, you have prob-
ably experienced the situation of returning to a project after a break and being confronted with a tangle
of files. Perhaps you have multiple versions of a spreadsheet, with names like version4 corrected -
USETHISONE real.csv. If you’re lucky, you’ve left yourself a text file with notes on the series of steps
needed to clean and process spreadsheet data, and a statistics script with comments indicating how to make
the input files it needs. But in trying to implement the steps, you likely find that not all of the steps are as
unambiguously recorded as you’d thought when you wrote them. The frustrations of working this way have
led many researchers to move towards integrating as much as possible of an analysis into a single script that
can easily be modified and re-run, in the spirit of reproducible research (see Section 2).

The programming language R has become a standard tool for such analyses due to its robust array
of packages for statistical analysis and data visualization (R Core Team 2022). For researchers who use
Maximum Entropy constraint grammars, however, there has not been a good way to carry out constraint-
weight fitting within R. Instead, it was necessary to leave an R script and fit weights in external software,
such as the MaxEnt Grammar Tool (Hayes, Wilson & George 2009) or the Microsoft Excel Solver (Fylstra,
Lasdon, Watson & Waren 1998).

*Thanks to the audience at the 2022 Annual Meeting on Phonology at UCLA for their useful feedback and discussion. Thanks
also to the valuable feedback from two anonymous reviewers.
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1.2 Goals of this software

We created this package to make life easier for phonologists and others who use Maximum Entropy con-
straint grammars – including those who argue against them. We also want to make it easier for analysts to
evaluate and build on each other’s work. Specifically, this package makes it easy to carry out an end-to-end
MaxEnt analyses within a a single R script. Our package can be used alongside existing downloadable R
code for carrying out various functions in Harmonic Grammar generally and MaxEnt specifically (Staubs
2011).

1.3 Overview

In the following sections, we will discuss the concept of reproducible research (section 2), and while step-
ping through functionality of the maxent.ot package, including fitting, generating predictions, model
comparison, and the use of prior (or bias) terms (Section 3). Finally, we present the machine learning tech-
nique of cross-validation as an approach for avoiding over-fitting and setting parameters of the prior term
(Section 4). Appendices present the OTSoft input file format, which our package is compatible with, and the
use of a temperature parameter when generating predictions.

Different readers will want to read different parts of this paper. Section 2, which contains no code,
is a brief discussion of the concept of reproducible research. Section 3 steps through the functionality of
the maxent.ot package, including fitting weights, generating predictions, model comparison, and the
use of prior (or bias) terms. Readers already familiar with how Maximum Entropy constraint grammars
work in phonology may skip the sections that contain background information and are labelled “MaxEnt
background”: Sections 3.4, 3.5, 3.6, and 3.10.1. Section 4 introduces the idea of using cross-validation to
decide how closely the model should fit the data.

2 Reproducible research

Reproducibility in research (Schwab, Karrenbach & Claerbout 2000; Peng 2011; Stodden, Leisch & Peng
2014) means making it easier for someone to re-run an analysis. Reproduction is not the same as replication:
replicating a result requires new data, such as from a new experiment; reproducing a result uses the same
data as the original study. Reproducibility supports replicability, though, by making it easier to ensure that
only the data have changed, and the method of analysis remains the same.

To make research reproducible, as much as possible the analysis should be run from a single script. The
script should take as its input raw, unprocessed data, such as a public database, or a results file written by
experimental software. The script should do all data cleaning and organization, and carry out all statistical
analyses. Ideally, the script produces a document combining explanatory text, easy-to-read code chunks,
statistical results, tables, and figures. (See Section 2.1 for the mechanics of how this works.) The movement
for reproducible research has roots in the movement for literate programming (Knuth 1992).

All this is in contrast to the approach that some of us have employed in the past, where we carry out a
series of data-cleaning operations using spreadsheet software – ideally keeping notes on how this is done,
but often finding those notes to be confusing or inadequate – then perhaps run a Python program, then an R
script, then copy and paste results from our R console and write figures to separate files.

2.1 R Markdown for reproducible research

Commonly used tools for reproducible research are R Markdown files (Allaire, Xie, McPherson, Luraschi,
Ushey, Atkins, Wickham, Cheng, Chang & Iannone 2021) for R, and Jupyter notebooks (Kluyver, Ragan-
Kelley, Pérez, Granger, Bussonnier, Frederic, Kelley, Hamrick, Grout, Corlay, Ivanov, Avila, Abdalla &
Willing 2016) or Google Colab (Bisong 2019) for Python (Van Rossum & Drake 2009). We will focus here
on R Markdown, since our package is for use in R.
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R (R Core Team 2022) is a widely-used statistical programming language and software environment.
One reason for R’s popularity is the existence of thousands of user-contributed packages. There are packages
for plotting vowel acoustics (visvow; Heeringa & Van de Velde 2018), working with basketball play-by-
play data (wehoop; Gilani & Hutchinson 2021), detecting blood doping (ABPS; Schütz & Zollinger 2018),
and making maps of Brazil (geobr; Pereira, Gonalves et al. 2019), among many, many others.

It is possible to type R commands into the R command line interpreter, one at a time. In an analysis
of any complexity, however, it is generally easier to assemble a series of commands into a script, with the
possibility of including comments. But a much bigger step towards reproducibility is to use R Markdown.

Figure 1: A sample of R Markdown in RStudio.

Figure 1 shows what an R Markdown file looks like when open in RStudio (RStudio Team 2020), which
is a integrated development environment for R – that is, software for writing and running R code. There is a
light sprinkling of markup tags, such as the block at the top with the file’s metadata (title, author, date, output
type), tags for section and sub-section headers (#, ##, etc.), bulleted lists (*, +), and more. Most important
is the code chunk marked off with ‘‘‘ and automatically shaded in grey by RStudio. This is where the
analyst types R code, just as they would in an R script or on the command line. For more information about
R Markdown, see Xie, Allaire & Grolemund (2018); Xie, Dervieux & Riederer (2020).
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Figure 2: The knitted output of the R Markdown file in 1.

When the analyst presses the Knit button, the knitr package (Xie 2014) creates a output in HTML, PDF
(via a LaTeX template), Microsoft Word, Beamer, or various other formats. Figure 2 shows an example. The
text from the markdown file is now formatted, the code chunk is printed (there is an option to prevent some
or all code chunks from appearing in the output), and the figure produced by the code is displayed. A figure
can also be written to a file.

2.2 Benefits of reproducible research

An immediate advantage of the reproducible approach that whenever a researcher wants to correct an error
or add some more analysis, they only need to edit the script and then press a button to re-run everything–they
don’t need to repeat a whole series of steps.

It also becomes easier to return to a project after a break, such as after getting journal reviews back. There
is no need to hunt for multiple files or remember procedures for analysis, because everything is organized in
one file.
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Preventing, catching, and correcting errors becomes easier in the reproducible framework, because all
steps of the analysis are written down for the researcher’s inspection.

In addition to these benefits to the researcher over the course of a project, reproducibility makes it easier
for others to understand, check, and build on our work. At the most basic level, another researcher – or
the original researcher’s own future self – can run the same script on the same input data, step by step, to
understand the analysis thoroughly and perhaps check for mistakes. Or a reader can copy chunks of code to
adapt for their own use. But a reproducible script can also be used to run the same analysis on a different
set of data – for instance, to compare two corpora, or to apply the same analysis to a replication of an
experiment – for maximum comparability. A reproducible script can be used to try out variations on the
original analysis, for example to see whether a statistical significance result holds up if random slopes are
added.

3 Carrying out a MaxEnt analysis using maxent.ot

In this section, which makes up the bulk of this article, we give a tutorial introduction to Maximum
Entropy Optimality Theory (henceforth MaxEnt) and the maxent.ot package. The analysis will illus-
trate the main functions of our package using a small, fabricated data set. The reader can download tu-
torial material from https://github.com/connormayer/maxent.ot/tree/master/inst/
extdata/pda_material to follow along.

As mentioned earlier, readers familiar with MaxEnt models may want to skip the sub-sections labelled
“MaxEnt background”.

3.1 Installing the package

In order to use maxent.ot, you will need to have the programming language R installed on your computer
(R Core Team 2022: https://www.r-project.org/). You should also install RStudio (https:
//posit.co/download/rstudio-desktop/), an integrated development environment for R.

There are two ways to install the maxent.ot package. You can install it from the CRAN repository
using the following command:

install.packages("maxent.ot")

You can also install it from the development GitHub repository using the following commands, which
will install the package only if it is not already installed:

# This installs the devtools package if necessary

if (!require(devtools)) {

install.packages("devtools", repos = "http://cran.us.r-project.org")

}

if (!require(maxent.ot)) {

devtools::install_github("connormayer/maxent.ot")

}

If the package is installed, but you want to re-install it – for example, in case there is a more recent
version – then use the following commands instead:

if (!require(devtools)) {

install.packages("devtools", repos = "http://cran.us.r-project.org")
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}

devtools::install_github("connormayer/maxent.ot")

If the package has been installed successfully, you should be able to run the following command without
error.

library(maxent.ot)

3.2 A running example: simplification of onset clusters by French-acquiring children

Throughout this paper we’ll use a simple, fabricated data set that is loosely based on Rose (2002). This data
set consists four types of French words with complex onsets, and the rate at which each word type’s onset is
realized faithfully or simplified by an imaginary French-acquiring child. The dataset is shown in Table 1.

Underlying Surface Observed count
/"stad/ ["stad] 40

["tad] 60
/"gKo/ ["gKo] 60

["go] 40
/spa.gE."ti/ [spa.gE."ti] 10

[pa.gE."ti] 90
/gKy."jo/ [gKy."jo] 30

[gy."jo] 70

Table 1: A fabricated data set based on Rose (2002).

The frequencies in this data set reflect two specific properties:

1. Cluster simplification is more likely to occur in unstressed syllables (e.g., /gKy."jo/ vs. /"gKo/). This is
a real aspect of Rose’s data, although the frequencies are invented;

2. Cluster simplification is more likely in onsets that violate the Sonority Sequencing Principle (e.g,
Steriade 1982; Selkirk 1984): that is, it is more likely for fricative-stop sequences than for stop-liquid
sequences (e.g., /"stad/ vs. /"gKo/–this aspect of the data is invented). This is not part of Rose’s data,
but it has been observed in both L1 (e.g., Yavaş, Ben-David, Gerrits, Kristoffersen & Simonsen 2009;
Jarosz 2017) and L2 (e.g., Carlisle 1991, 2001) learners that complex onsets with greater sonority
rises tend to be produced more accurately.

These patterns are visualized in Fig. 3.
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Figure 3: Rates of simplification of different types of onset cluster.

3.3 Formatting data for maxent.ot

The primary input data to maxent.ot are tableaux. These consist of input/output pairs with corresponding
frequency counts and violation profiles. Our input files will use the input/output pairs and counts from
Table 1 and the constraints introduced above. For the time being we’ll consider only the two constraints
*COMPLEX and MAX, which will be defined in the following section. Note that these input files do not
include constraint weights: we’ll talk below about how weights can be specified by the analyst or learned
from the data.

The functions in the maxent.ot package expect the input data to be in the format of either a data
frame, which is a table-like structure that is built into R, or a tibble, which is a similar structure used by the
popular tidyverse package (Wickham, Averick, Bryan, Chang, McGowan, Franois, Grolemund, Hayes,
Henry, Hester, Kuhn, Pedersen, Miller, Bache, Mller, Ooms, Robinson, Seidel, Spinu, Takahashi, Vaughan,
Wilke, Woo & Yutani 2019)).

An example of this format is shown in Table 2, and the corresponding file can be found at data/sim-
ple input dataframe.csv in the tutorial materials.

Input Output Frequency StarComplex Max
"stad "stad 40 1
"stad "tad 60 1
"gKav "gKav 60 1
"gKav "gav 40 1
spa.gE."ti spa.gE."ti 10 1
spa.gE."ti pa.gE."ti 90 1
gKy."jo gKy."jo 30 1
gKy."jo gy."jo 70 1

Table 2: maxent.ot formatted input. Note that the actual input files are comma separated, but we present
the data in a tabular fashion here for clarity.

The first step to using the maxent.ot package is to either use R code to create a dataframe or
tibble containing the input data, or, as we’ll do here, to load the input from a file into a tibble, which
we’ll call simple input. We’ll use the tidyverse packages throughout this tutorial.1

1Although we use the tiydverse packages here, they are not a requirement for using maxent.ot.
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if (!require(tidyverse)) {

install.packages("tidyverse", repos = "http://cran.us.r-project.org")

}

library(tidyverse)

simple_input <- read_csv("data/simple_input_dataframe.csv")

maxent.ot can also read files in OTSoft format (Hayes, Tesar & Zuraw 2013) for backwards compat-
ibility with existing research projects. See Appendix A for more detail.

3.4 MaxEnt background: Constraint grammars

Maximum Entropy constraint grammars (MaxEnt; Smolensky 1986; Goldwater & Johnson 2003) are a tool
for modeling variation, and are a type of harmonic grammar (HG; Legendre, Miyata & Smolensky 1990;
Pater 2009). Like Optimality Theory (OT; Prince & Smolensky 1993/2004), HG models the mapping from
input forms to output candidates as a function of the relative strength of a set of constraints. These constraints
represent violable restrictions on either properties of the output form (markedness constraints) or ways in
which the input and output forms differ (faithfulness constraints). HG differs from OT in how it represents
relative constraint strength: OT uses a rank ordering of the set of constraints from strongest to weakest, while
HG assigns numeric weights, with larger values indicating greater strength.

We’ll use the following set of simplified constraints to model the data:

(1) *COMPLEX: No complex syllable onsets (Prince & Smolensky 1993/2004).

(2) MAX: Don’t delete segments (McCarthy & Prince 1994).

(3) MAX-STRESSED: Don’t delete segments from stressed syllables (Beckman 1998).

(4) SSP: Don’t violate the Sonority Sequencing Principle (e.g., Cho & King 2003).

Let’s take a single observation from our French data: one where /"stad/ is realized as ["tad], with simplifi-
cation of the initial cluster. For simplicity, we’ll initially consider only two of the four constraints presented
above: the markedness constraint *COMPLEX, which drives cluster simplification, and the faithfulness con-
straint MAX, which penalizes deletion.

Tableaux 3 and 4 provide examples of these constraints in OT and HG models, respectively.

/"stad/ *COMPLEX MAX

a. "stad ∗!
� b. "tad ∗

Table 3: Using ranked constraints to model onset cluster simplification.

/"stad/ H *COMPLEX MAX
w = 2 w = 1

"stad 2 1 0
� "tad 1 0 1

Table 4: Using weighted constraints to model onset cluster simplification.
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In both tableaux, ["tad] is the optimal candidate because it undergoes onset cluster simplification. Delet-
ing /s/ incurs a violation of MAX, but prevents a violation of the stronger constraint *COMPLEX. In the OT
model in Tableau 3, the relative strength of the two constraints is represented by their rank ordering in the
tableau: even though ["stad] and ["tad] each violate only one constraint, ["tad] is preferred because it violates
the lower-ranked constraint MAX. In the HG model in Tableau 4, the relative strength of the two constraints
is represented by their associated weights. *COMPLEX has a weight of 2, and so its violations are penalized
more strongly than those of MAX.

In the OT model, the optimal candidate is chosen by going through the constraints from highest to lowest
ranked and eliminating all remaining candidates that aren’t the best or tied for being the best according to
that constraint, until only a single candidate remains (or there are no more constraints, in which case the
remaining candidates tie for being optimal). In the HG model, the optimal candidate is the one with the
lowest harmony score, which we’ll notate as H . H is the sum of the weights of each constraint multiplied
by the number of times the candidate violates it. Expressed more precisely, let x be an input form and y be
a candidate output form for x. Then the harmony score associated with mapping from x to y is:

(5)

H(x, y) =
K∑
i=1

wiCi(x, y),

where K is the number of constraints, wi is the weight of the ith constraint, and Ci(x, y) is the number of
times the input-output mapping (x, y) violates the ith constraint.

We can use more compact notation if we represent the weights and constraint violations as vectors. This
corresponds more closely to the implementation of weights in maxent.ot (see Section 3.7). Let w be the
vector of constraint weights and C(x, y) be the vector of constraint violations (or the violation profile) of
(x, y). Then

(6)
H(x, y) = w · C(x, y),

where · is the dot product.
In the example in Tableau 4, w = ⟨2, 1⟩, C("stad, "tad) = ⟨0, 1⟩ and

(7)

H("stad, "tad) = w · C("stad, "tad)

= ⟨2, 1⟩ · ⟨0, 1⟩
= 2× 0 + 1× 1 = 1

HG predicts some quantitative patterns that cannot be represented in OT: for example, HG can encode
constraint cumulativity effects (e.g., Jäger & Rosenbach 2006; Breiss 2020) where multiple violations of
low-ranked constraints can outweigh fewer violations of high-ranked constraints.

3.5 MaxEnt background: How MaxEnt relates harmony to probability

HG models assign harmony scores to input-output pairs. We can consider these scores to be the output of the
phonological grammar that evaluates proposed input-output mappings (see, e.g., Daland 2015). In Tableau 4,
we selected the optimal candidate by choosing the one with the lowest score.
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Although this aligns with the behavior of OT models, it is not the only way to link harmony scores with
empirical data. In particular, selecting a single, optimal candidate ignores the gradience in harmony scores:
harmony scores allow us not only to identify the best output candidate under some grammar, but also to
evaluate the relative goodness of each candidate. Consider a mapping like /"stad/ → ["sta], which deletes
a consonant, violating MAX, while retaining the violation of *COMPLEX. Under the constraint weights in
Tableau 5, H("stad, "sta) = 3. Thus although ["stad] and ["sta] are both sub-optimal candidates compared to
["tad], ["stad] receives a ‘better’ (lower) harmony score than ["sta].

/"stad/ H *COMPLEX MAX
w = 2 w = 1

"stad 2 1 0
� "tad 1 0 1

"sta 3 1 1

Table 5: A range of H scores.

MaxEnt models implement a specific method for linking gradience in harmony scores to probability
distributions over candidates. MaxEnt is not the only HG model that relates harmony scores to probabilities
(see, e.g., noisy harmonic grammar; Boersma & Pater 2016), but it has well-defined learning procedures,
is analytically tractable, and lends itself to the application of standard statistical inference procedures (Da-
land 2015; Flemming 2021). Furthermore, its predictions have been shown to align well with empirical
data (Flemming 2021).There are also a number of critiques of MaxEnt as a framework for modeling the
phonological grammar(e.g., Anttila, Borgeson & Magri 2019; Magri & Anttila 2022; Tilsen 2023).

MaxEnt models define the probability of the mapping (x, y) as follows. Let Y(x) be the set of candidate
outputs for x (the GEN function applied to x). Then the conditional probability of an output y given input x
is

(8)

P (y|x) = exp(−H(x, y))∑
y′∈Y(x) exp(−H(x, y′))

.

The expression on the right side of this equation has a special name: the softmax function (Luce 1959;
Bridle 1989). This function is commonly used to transform a vector of numbers into a vector representing a
categorical probability distribution, such that larger values are associated with higher probabilities.

Using the softmax function in MaxEnt means that a candidate’s probability is proportional to its (nega-
tive) harmony score, exponentiated. The best possible harmony score, zero (no violations of any non-zero-
weighted constraints), yields the largest possible numerator, e0 = 1. A large harmony score (caused by
violations of high-weighted constraints), once negated, yields a smaller numerator.2 The sum in the denom-
inator, which is the same for every candidate output of a given input, ensures that the probabilities across all
candidates sum to 1 within a tableau.

/"stad/ H e−H P *COMPLEX MAX
w = 2 w = 1

"stad 2 0.14 0.14÷ (0.14 + 0.37) = 0.27 1 0
"tad 1 0.37 0.37÷ (0.14 + 0.37) = 0.73 0 1

Table 6: A tableau with a probability distribution over output candidates.

2It is also common for constraint weights or violation counts (but not both) to be represented as negative numbers, which
removes the need for negation at this step.
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Tableau 6 contains the same weights and violation profiles as Table 4, but shows how each candidate’s
harmony H is exponentiated and then converted into a probability.

3.6 MaxEnt background: Quantifying how well a model fits the data

A common task of the analyst is to find the model that best describes the observed data, which includes
choosing which constraints to include and how they should be weighted. In this section, we compare models
that have different weights for the same constraints. Section 3.8 will introduce the maxent.ot function
optimize weights, which automates this process. We delay comparing models that differ in which
constraints they include to Section 3.9.

Consider the two models in Table 7. In Model 1, *COMPLEX has a weight of 2 and MAX has a weight
of 1. In Model 2, the same constraints now have different weights, 5 and 2.

*COMPLEX MAX

w1 2 1
w2 5 2

Table 7: Constraint weights of two toy models.

MaxEnt models assign predicted probabilities to input/output mappings. For example, Model 1, as
shown in Tableau 6, assigns the mapping /"stad/ → ["stad] a probability of e−2/(e−2 + e−1) = 0.27, and the
mapping /"stad/ → ["tad] a probability of e−1/(e−2+e−1) = 0.73. That is, we predict our hypothetical child
to produce ["stad] about a quarter of the time, and ["tad] about three quarters of the time. Doing the same
calculations, we get the probabilities that Model 2 predicts for the input/output mappings. These predicted
probabilities are summarized in Table 8.

Model 1 Model 2
/"stad/ → ["stad] .27 .12
/"stad/ → ["tad] .73 .88

Table 8: Input/output probabilities predicted by the two toy models.

Suppose we have collected the data in Table 9, observing ["tad] twice and ["stad] once. The relative
frequency column is included to make it easier to compare the observed data (Table 9) with the predicted
probabilities in Table 8.

Frequency Relative frequency
/"stad/ → ["stad] 1 .33
/"stad/ → ["tad] 2 .67

Table 9: Toy data from our hypothetical child.

For a small data set like this, it is easy to eyeball the model predictions and conclude that Model 1 fits
the observed data better. However, real data sets are typically much larger. It is useful to have a single metric
to evaluate how well a model performs on the observed data. Here we introduce the concept of conditional
likelihood, which is a measure of how well a model fits the observed data. A higher conditional likelihood
indicates a better model fit to the observed data. (The term conditional is inherited from the conditional
probabilities that go into the computation of the conditional likelihood).

The conditional likelihood of a data set d is computed from individual probabilities by taking their
product, as below:
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(9)

L(w, d) =
N∏
i=1

P (yi|xi;w)

where N is the number of data points in d and (xi, yi) is the ith observed input/output pair. For example,
suppose we had observed 1 token of (/"stad/, ["stad]) and 2 tokens of (/"stad/, ["tad]). Under the weights in
Model 1, P ("stad|"stad) = 0.27 and P ("tad|"stad) = 0.73. Given the observed data, the conditional likelihood
under the weights of Model 1 is

(10)

L(w1, {(/"stad/, ["stad]), (/"stad/, ["tad]), (/"stad/, ["tad])})
= P (["stad] | /"stad/;w)× P (["tad] | /"stad/;w)× P (["tad] | /"stad/;w)

= 0.27× 0.73× 0.73

= 0.14,

and the conditional likelihood under the weights of Model 2 is worse (lower):

(11)

L(w2, {(/"stad/, ["stad]), (/"stad/, ["tad]), (/"stad/, ["tad])})
= P (["stad] | /"stad/;w)× P (["tad] | /"stad/;w)× P (["tad] | /"stad/;w)

= 0.12× 0.88× 0.88

= 0.09,

which indicates that Model 1 fits the data better than Model 2 does.
In a more realistic dataset, we will be multiplying many more probabilities – perhaps hundreds, or

thousands. Multiplying probabilities together quickly produces very small numbers, and the conditional
likelihood of large data sets can become small enough to cause numerical issues on computers. Because
of this, it is more common to work with conditional log likelihoods instead. It is typical to use the natural
log (log base e), but the choice of base is not particularly important. Log probabilities range from −∞
(corresponding to a probability of 0) to 0 (corresponding to a probability of 1). Because multiplying two
numbers corresponds to adding their logarithms, the conditional log likelihood of a data set can be calculated
as follows:

(12)

LL(w, d) =
N∑
i=1

lnP (yi|xi;w).

As with conditional likelihood, a higher conditional log likelihood (i.e., less negative, closer to zero) indi-
cates a better model fit to the observed data.
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Consider a subset of the data in Table 1 for just the input /"stad/, consisting of 40 tokens of ["stad] and 60
tokens of ["tad], and assuming the same weights as above. This means that under Model 1, the conditional
log likelihood of this subset of the data is:

(13)

LL(w1, d) = 40 ln(P ( ["stad] | /"stad/ )) + 60 ln(P ( ["tad] | /"stad/ ))

= 40(ln(0.27)) + 60(ln(0.73))

= 40(−1.31) + 60(−0.31)

= −71.26

As expected, Model 2 has a worse (lower) conditional log likelihood than Model 1:

(14)

LL(w2, d) = 40 ln(P ( ["stad] | /"stad/ )) + 60 ln(P ( ["tad] | /"stad/ ))

= 40(ln(0.12)) + 60(ln(0.88))

= 40(−2.12) + 60(−0.13)

= −92.6,

which indicates that Model 2’s weights provide a poorer fit to the observed data.
The conditional likelihood of a data set is always maximized by choosing probabilities that exactly match

the observed frequencies in the data set. In the context of a MaxEnt model, this means choosing weights that
generate such probabilities. For example, consider the same data set as above, but with the probabilities set
exactly to the observed frequencies of each output:

(15)

LLw(d) = 40 ln(0.4) + 60 ln(0.6)

= 40(−0.92) + 60(−0.51)

= −67.3

The conditional log likelihood under these probabilities, −67.3, is the best conditional log likelihood
possible for this data set, and is greater than the −71.3 we obtained using the weights in Model 1 or the
−92.6 we obtained using the weights in Model 2.

The conditional log likelihood of the data is an important metric that is used for both training a model
(Section 3.8) and evaluating the success of trained models that have different constraints (Section 3.9).
In training a model–i.e., learning constraint weights–we aim to maximize the conditional log likelihood.
Essentially, we are choosing the best model (highest conditional log likelihood) among models that have the
same constraints, but different weights.

3.7 Calculating candidate distributions and conditional likelihoods

Our first application of the maxent.ot library will be to calculate probability distributions over candi-
dates and the conditional likelihood of a data set given a vector of weights. We’ll do this using the pre-
dict probabilities function. This function takes a data set and a vector of weights, and returns the
probabilities for each input-output pair and the conditional log likelihood of the entire data set.
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Assuming you’ve created the simple input variable as in Section 3.3, you can call predict -
probabilities as follows:

result <- predict_probabilities(simple_input, c(2,1))

result$loglik

# -265.3047

result$predictions

# See Table 10

Here we’ve passed in the data set as the first argument, and a vector of constraint weights, c(2,1),
as the second. (The c function is R’s way of creating a vector.) The function returns an object with two
attributes. The attribute loglik is the conditional log likelihood of the data set under the provided weights
– it is smaller (more negative) than the log likelihoods we previously calculated, because now we are looking
at a larger data set consisting of all four words rather than just one. The attribute predictions is a data
frame; its contents in this case are shown in Table 10.

Input Output Freq StarComplex Max Predicted Observed Error
1 "stad "stad 40 1 0 0.27 0.40 -0.13
2 "stad "tad 60 0 1 0.73 0.60 0.13
3 "gKav "gKav 60 1 0 0.27 0.60 -0.33
4 "grav "gav 40 0 1 0.73 0.40 0.33
5 spa.gE."ti spa.gE."ti 10 1 0 0.27 0.10 0.17
6 spa.gE."ti pa.gE."ti 90 0 1 0.73 0.90 -0.17
7 gKy."jo gKy."jo 30 1 0 0.27 0.30 -0.03
8 gKy."jo gy."jo 70 0 1 0.73 0.70 0.03

Table 10: The output of the predict probabilities function.

The first five columns are the same as the training data, simple input. The Predicted column
contains the probabilities calculated by the MaxEnt model, and the Observed column contains the ob-
served probabilities in the data set. The Error column is the difference between the predicted and observed
probabilities. This column is helpful to identify what kinds of errors a model makes. In this case, we can see
the model systematically over-predicts the application of cluster simplification, which suggests the relative
weight of *COMPLEX should be lowered.

To better understand how these grammars work, the reader might find it interesting to try to achieve
the highest conditional log likelihood possible by calling predict probabilities with a variety of
different weights.

3.8 Learning weights in a MaxEnt grammar

Finding a near-optimal vector of weights by hand can be tedious, but fortunately, the process can be au-
tomated. Given a data set d, which for us consists of counts of input-output pairs and their corresponding
violation profiles, it is always possible to find the constraint weights that maximize the conditional log
likelihood of the data.3

The goal is to find weights w that maximize the objective function LLw(d):

3It may be the case that there is more than one set of weights that correspond to the same optimal distribution.
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(16)

LLw(d) =
N∑
i=1

lnP (yi|xi;w)

That is, we want to find the weights w such that the conditional log likelihood of the data is as high as
possible. The properties of MaxEnt models are such that it’s always possible to find weights that maximize
this value (or come arbitrarily close to doing so). For reasons of space, we refrain from going into detail about
this process here, but there are a number of references that describe the process in more detail (Della Pietra,
Della Pietra & Lafferty 1997; Goldwater & Johnson 2003; Hayes & Wilson 2008). maxent.ot uses the
L-BFGS optimizer implemented by the R statistics library’s optim function. Following standard practice,
we assume that weights are required to be non-negative. This corresponds to a theoretical assumption that
violating constraints should only ever penalize candidates, not reward them.4

The function in maxent.ot to find the optimal weights for a data set is optimize weights. The
simplest application of this function takes a single data frame or tibble as an argument, in the same format
as predict probabilities .

simple_model <- optimize_weights(simple_input)

simple_model$weights

# StarComplex Max

# 0.6190392 0.0000000

simple_model$loglik

# -258.9787

simple_model$k

# 2

simple_model$n

# 400

simple_model$bias_params

# NA

The object returned by optimize weights contains five attributes:

1. weights: A named vector containing the optimal constraint weights (here, 0.62 for *COMPLEX and
0.00 for MAX).

2. loglik: The conditional log likelihood of the data set under these weights.

3. k: The number of constraints.

4. n: The number of data points.

5. bias params: This will be discussed in Section 3.10.

The k and n parameters will become relevant in Section 3.9 when we turn to model comparison.
The data set and the weights calculated by optimize weights can be used as input for predict -

probabilities to get the predicted probabilities for individual input-output pairs.

4There is work that has proposed the use of constraints that reward violations (e.g. Kimper 2011; Kaplan 2018). To allow
constraint weights to be negative, the optimize weights and cross validate functions can take the optional argument
allow negative weights = TRUE. (By default, this argument is set to FALSE.)
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result <- predict_probabilities(simple_input, simple_model$weights)

result$loglik

# -258.9787

result$predictions

# See Table 11

UR SR Freq StarComplex Max Predicted Probability Observed Probability Error
1: stad stad 40 1 0 0.35 0.4 -0.05000001
2: stad tad 60 0 1 0.65 0.6 0.05000001
3: grav grav 60 1 0 0.35 0.6 -0.25000001
4: grav gav 40 0 1 0.65 0.4 0.25000001
5: spagEti spagEti 10 1 0 0.35 0.1 0.24999999
6: spagEti pagEti 90 0 1 0.65 0.9 -0.24999999
7: gryjo gryjo 30 1 0 0.35 0.3 0.04999999
8: gryjo gyjo 70 0 1 0.65 0.7 -0.04999999

Table 11: Output of the predict probabilities function for the model fitted to the data.

You can save the output of optimize weights to a file by using write csv or a similar function
on the predictions attribute.

3.8.1 Testing against new data

Given a model that has been fitted by optimize weights, we can see how it generalizes to new data
using predict probabilities. For example, we might wish to train a model of English irregular past
tense forms on real English verbs – (/hajd/, [hId]), (/fajnd/, [fawnd]), etc. – and then test that model against
some novel verbs such as /splIN/ – and compare the model’s performance on the novel verbs to real humans’
performance on a wug test (Berko 1958; Albright & Hayes 2003).

We will stick with our toy example of acquiring French, and test the model just fitted against the hypo-
thetical data shown in Table 12, representing how many times a child would produce hypothetical /"kKob/
faithfully or with onset simplification (the corresponding file can be found at data/simple wug.csv in
the tutorial materials).

Input Output Frequency StarComplex Max
"kKob "kKob 4 1
"kKob "kob 3 1

Table 12: Wug data to test fitted grammar against.

To test the grammar against these new data, we simply use the predict probabilities function
again, specifying the wug data now as input:

wug_input <- read_csv("data/simple_wug.csv")

result_wug <- predict_probabilities(wug_input, simple_model$weights)

result_wug$loglik

# -5.491637

result_wug$predictions
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# See Table 13

Input Output Freq StarComplex Max Predicted Observed Error
1 "kKob "kKob 4 1 0 0.35 0.5714286 -0.2214286
2 "kKob "kob 3 0 1 0.65 0.4285714 0.2214286

Table 13: Output of predict probabilities for simple wug data.

We can see that the grammar trained on the original data doesn’t fit the wug data very well, mainly
because there is already a word in the training data, /"gKav/, that has the very same violation profile as
/"kKob/, but a higher rate of onset cluster simplification (40%). Because the model only saw /"gKav/ as the
weights were being selected, it incorrectly predicts a similar simplification rate for /"kKob/.

Besides modeling a human’s encounter with new items, being able to test the grammar’s predictions on
unseen items is also useful for model-fitting itself, as we’ll see in Section 4.

3.9 Comparing how well different models fit the data

One of the analyst’s main tasks is to compare different models of the same data, and perhaps to select one
model as preferred. Often, a phonologist wants to determine whether the data justify including a certain
constraint in the grammar (e.g., Hayes, Wilson & Shisko 2012; Shih 2017).

We first consider adding the two additional constraints listed earlier, MAXSTRESSED and SSP. The
faithfulness constraint MAXSTRESSED penalizes deleting from a stressed syllable, as in /"stad/ → ["tad] and
/"gKav/ → ["gav]. This was a real effect noted by Rose (2002).

The markedness constraint SSP, short for SONORITYSEQUENCINGPRINCIPLE (e.g., Cho & King
2003), penalizes onsets that decrease in sonority, such as [st, sp, sk]; this constraint therefore gives an extra
reason to simplify those onsets.

The new input data are shown in Table 14.

Input Output Frequency StarComplex Max MaxStressed SSP
"stad "stad 40 1 1
"stad "tad 60 1 1
"gKav "gKav 60 1
"gKav "gav 40 1 1
spa.gE."ti spa.gE."ti 10 1 1
spa.gE."ti pa.gE."ti 90 1
gKy."jo gKy."jo 30 1
gKy."jo gy."jo 70 1

Table 14: Input data, now with two more constraints.

We could create another .csv input file with the two new columns, but instead here we use R code to
add two new columns to the existing tibble, and while we’re at it we also create an input tibble that
adds only MAXSTRESSED and one that adds only SSP:

# copy the original data and add new constraint violations

max_stressed_ssp_input <- simple_input %>%

mutate(MaxStressed = c(0,1,0,1,0,0,0,0),

SSP = c(1,0,0,0,1,0,0,0))

17



Phonological Data & Analysis X(Y), 20XX Linguist & Higgins: Template for a PDA paper

# Remove SSP column for model without SSP

max_stressed_input <- max_stressed_ssp_input %>%

select(-SSP)

# Remove MaxStressed column for model without MaxStressed

ssp_input <- max_stressed_ssp_input %>%

select(-MaxStressed)

Now, we can fit constraint weights to each of the three new scenarios:

model_max_stressed <- optimize_weights(max_stressed_input)

model_ssp <- optimize_weights(ssp_input)

model_max_stressed_ssp <- optimize_weights(max_stressed_ssp_input)

We now have four models: simple model with just two constraints, model MaxStressed SSP
with all four constraints, and model MaxStressed and model SSP each with three constraints.

Using the predict probabilities function, we can derive the predictions of each model for the
same data. The code below also collates the predictions into a single table for easier comparison.

# Apply predict_probability to each model

result_basic <- predict_probabilities(simple_input, simple_model$weights)

result_max_stressed <- predict_probabilities(

max_stressed_input, model_max_stressed$weights

)

result_ssp <- predict_probabilities(ssp_input, model_ssp$weights)

result_max_stressed_ssp <- predict_probabilities(

max_stressed_ssp_input, model_max_stressed_ssp$weights

)

# Consolidate model predictions into single tibble

# Round and format for readability

results_compiled <- result_max_stressed_ssp$predictions %>%

select(-Error, -Predicted) %>%

mutate(`Pred. basic` = result_basic$predictions$Predicted,

`Pred. w/ MaxStr` = result_max_stressed$predictions$Predicted,

`Pred. w/ SSP` = result_ssp$predictions$Predicted,

`Pred. w/ both` = result_max_stressed_ssp$predictions$Predicted) %>%

mutate_at(vars(starts_with("Pred")), list(˜ round(., 2)))

results_compiled

# See Table 15, which is slightly modified from the R output for better display

Looking at the predictions of each model in Table 15, it is clear that the model with both of the new
constraints (“Pred. w/ both” column) achieves the closest fit to the data. The stress and sonority effects are
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both well captured, and the predicted probabilities are close to the observed probabilities that the model
was trained on (“Obs.” column). But, does the full model’s improved fit justify its greater complexity?
The compare models function answers this question, under various measures. The function takes as
its arguments the models that are being compared and the desired method of comparison. We will briefly
describe the supported methods below.

UR SR *Compl Max MaxStr SSP Obs. Pred. basic Pred. w/ MaxStr Pred. w/ SSP Pred. w/ both
"stad "stad 1 0 0 1 0.40 0.35 0.50 0.25 0.38
"stad "tad 0 1 1 0 0.60 0.65 0.50 0.75 0.62
"gKav "gKav 1 0 0 0 0.60 0.35 0.50 0.45 0.62
"gKav "gav 0 1 1 0 0.40 0.65 0.50 0.55 0.38
spagE"ti spagE"ti 1 0 0 1 0.10 0.35 0.20 0.25 0.12
spagE"ti pagE"ti 0 1 0 0 0.90 0.65 0.80 0.75 0.88
gKy"jo gKy"jo 1 0 0 0 0.30 0.35 0.20 0.45 0.28
gKy"jo gy"jo 0 1 0 0 0.70 0.65 0.80 0.55 0.72

Table 15: Predictions of four models.

3.9.1 BIC

The BIC, or Bayesian Information Criterion (Schwarz 1978), combines a measure of how well the model
fits the data and a measure of how complex the model is. The smaller this number, the better the model. The
measure of model fit is −2LLw(d), where LLw(d) is the log likelihood of the data d given the weights w, as
defined and explained in Section 3.6. The closer to zero this quantity is, the better the model fit. The measure
of model complexity is k ln(N), where k is the number of constraints (in the case of a constraint grammar
– more generally, it is the degrees of freedom in the model) and N is the number of data points, which in
our running example is 400. Thus, the BIC becomes larger (worse) when there are more constraints, and the
penalty per constraint is greater the more data have been observed; in other words, the more data there is,
the more a constraint needs to explain in order to earn its place in the grammar. The full expression is shown
in (17).

(17)
BIC = −2LLw(d) + k ln(N)

Let us calculate the BIC for each of the grammars we have fit so far. We can do this by hand, as we
demonstrate using the basic, two-constraint model below: we simply retrieve LLw(d), k, and N , and plug
them into Equation (17), yielding.

-2 * simple_model$loglik + simple_model$k * log(simple_model$n)

# 529.9402

But we can also use the function compare models to automatically obtain the BIC for two or more
models. The function takes as its arguments two or more objects in the format returned by optimize -
weights, plus the method of comparison to use. In this case, we specify method = "bic" (to prevent
numbers from displaying in scientific notation, we set R’s global option scipen to a high value to turn
scientific notation off, and digits to 5 to limit the number of decimal places shown. We later return
digits to its default value of 7.)
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options(scipen = 999)

options(digits = 5)

compare_models(

simple_model, model_max_stressed, model_ssp, model_max_stressed_ssp,

method = "bic"

)

options(digits = 7)

# See Table 16

model k n bic bic.delta bic.wt cu.wt ll
MaxStressed SSP input 4 400 481.59 0.000 0.998996393522926 0.999 -228.81

MaxStressed input 3 400 495.39 13.806 0.001003595038440 1.000 -238.71
SSP input 3 400 518.16 36.576 0.000000011407013 1.000 -250.09

simple input 2 400 529.94 48.352 0.000000000031622 1.000 -258.98

Table 16: BIC values for four models.

We can see in Table 16 that, as we would always expect, adding more constraints brings the log likeli-
hood (the column ll) closer to zero. We can also see that even though the most-complex model, with both
MAXSTRESSED and SSP, has the most constraints (k = 4) the added complexity is worth it, because this
model has the lowest BIC (481.5879). The bic.delta column shows how much worse each model is than
the best model – you can verify that each model’s bic.delta value is obtained by subtracting 481.5879
from that model’s bic value. Raftery (1995) proposes that a difference of 0 to 2 be taken as weak evidence
for the “better” model over the “worse” model; a difference of 2 to 6 as positive evidence; a difference of 6
to 10 as strong evidence, and over 10 as very strong evidence. In our case, there is, in Raftery’s terms, very
strong evidence that the full model is better than any of the three smaller models.5

But of course, more complex is not always better. For comparison, we now introduce an even more
complex model, with the constraint DOTHERIGHTTHING. This constraint is simply defined to penalize, in
each tableau, the candidate that the four-constraint model was (slightly) over-predicting. For example, the
mapping (/"stad/, ["tad]) incurs a violation of DOTHERIGHTTHING because the observed probability is 0.60
but the four-constraint model predicts 0.62.

# Make the new data tableau

# Copy the four-constraint data

# Add DoTheRightThing column

dtrt_input <- max_stressed_ssp_input %>%

mutate(DoTheRightThing = c(0,1,1,0,1,0,0,1))

# Fit constraint weights

model_dtrt <- optimize_weights(dtrt_input)

# Retrieve model predictions

result_dtrt <- predict_probabilities(dtrt_input, model_dtrt$weights)

5The bic.wt column reports the “Schwartz weights”, which are each model’s BIC score divided by the sum of the BIC of all
models. The cu.wt column reports the “cumulative Schwarz weights”, which are just the cumulative sum of the Schwarz weights
starting from the model with the smallest BIC, and moving down the list to larger-BIC models. For information on how to interpret
these quantities, see, e.g., Burnham & Anderson (2004); Wagenmakers & Farrell (2004).
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# Get log likelihood

result_dtrt$loglik

# -228.1971

To save space, we don’t show here result DTRT, the table of the new model’s predictions, but they are
essentially identical to the training data, with the biggest error value being 0.0000047. This is reflected in the
log likelihood of the training data under this model, -228.1971 – identical to the best possible log likelihood
that any model could obtain for this data set, calculated below using the expression we introduced above in
12.

sum(simple_input$Frequency * log(simple_input$Frequency/100))

#-228.1971

But, compare models shows that the improved fit does not justify the increase from four constraints
to five, and the five-constraint model’s BIC is bigger (worse) than the four-constraint model’s.

options(digits = 5)

compare_models(model_max_stressed_ssp, model_dtrt, method = "bic")

#See Table 17

In Table 17, the bic.delta value indicates positive evidence favoring the four-constraint model over
the four-constraint model plus DOTHERIGHTTHING.

model k n bic bic.delta bic.wt cu.wt ll
MaxStressed SSP input 4 400 481.59 0.0000 0.915426 0.91543 -228.81

DTRT input 5 400 486.35 4.7635 0.084574 1.00000 -228.20

Table 17: BIC values for four-constraint model vs. five-constraint model.

Thus, out of all the models we considered, BIC finds the model with *COMPLEX, MAX,
MAXSTRESSED, and SSP to be the sweet spot between under-fitting, with too few constraints, and over-
fitting, with too many (see Section 4 for more on under- and over-fitting).

BIC is not the only measure that maxent.ot implements. The remainer of this subsection introduces
the other measures available and shows how the various models perform on them.

3.9.2 AIC and AICc

The AIC, or Akaike Information Criterion Akaike (1974), is another measure that balances model fit against
model complexity. The difference is that the penalty for model parameters does not make reference to the
number of data observations:

(18)
AIC = −2LLw(d) + 2k

Although the equations for these metrics are superficially similar, they are derived from different starting
assumptions. It is beyond the scope of this article to examine the differences between BIC and AIC – both
theoretical, when n is infinite, and practical, with real data sets. For some comparisons, see, e.g., Burnham
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& Anderson (2004); Wagenmakers & Farrell (2004); Vrieze (2012). In our toy example, when compare -
models is told to use AIC rather than BIC, it again chooses the four-constraint model as the best trade-off
between fit and complexity, although the over-fit, five-constraint model is close behind.

compare_models(

simple_model, model_max_stressed, model_ssp, model_max_stressed_ssp,

model_dtrt, method = "aic"

)

# See Table 18

model k aic aic.delta aic.wt cum.wt ll
MaxStressed SSP input 4 465.62 0.00000 0.59527945074509503 0.59528 -228.81

DTRT input 5 466.39 0.77207 0.40463926902930786 0.99992 -228.20
MaxStressed input 3 483.42 17.79779 0.00008127930141631 1.00000 -238.71

SSP input 3 506.19 40.56753 0.00000000092383280 1.00000 -250.09
simple input 2 521.96 56.33526 0.00000000000034808 1.00000 -258.98

Table 18: AIC values for five models.

The AICc, or AIC-corrected, is a variant of the AIC designed to avoid overfitting when the amount of
observed data is small. The correction is performed by adding a term that further penalizes a model for its
number of parameters k, but less so as the number of observations, n, exceeds the number of parameters k:

(19)

AICc = AIC +
2k2 + 2k

n− k − 1

Once again, even with this correction, the four-constraint model is rated best:

compare_models(

simple_model, model_max_stressed, model_ssp, model_max_stressed_ssp,

model_dtrt, method = "aic_c"

)

# See Table 19

model k n aicc aicc.delta aicc.wt cum.wt ll
MaxStressed SSP input 4 400 465.72 0.00000 0.60140768797465816 0.60141 -228.81

DTRT input 5 400 466.55 0.82309 0.39850850852858155 0.99992 -228.20
MaxStressed input 3 400 483.48 17.75713 0.00008380254388359 1.00000 -238.71

SSP input 3 400 506.25 40.52687 0.00000000095251235 1.00000 -250.09
simple input 2 400 521.99 56.26422 0.00000000000036438 1.00000 -258.98

Table 19: AICc values for five models.

3.9.3 Likelihood ratio test

compare models implements one more measure, the likelihood ratio test. This measure is more restricted
in its application: it can only be used to compare pairs of models, and it requires that the models be nested:
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in this case, that one model’s set of constraints be a subset of the other’s. For example, we can compare the
simple two-constraint model to the three-constraint model that adds SSP, but this measure does not allow us
to compare the two three-constraint models. To perform the likelihood ratio test, the code first calculates the
likelihood ratio, which is defined as follows, where LL2 is the conditional log likelihood, which we wrote
above as LLw(d), for the model with more parameters, and LL1 is the conditional log likelihood for the
model with fewer parameters:

(20)
LR = 2(LL2 − LL1)

To calculate a p-value, the code then performs a chi-squared test, with χ2 = LR and k, the degrees of
freedom, set to the difference in number of constraints between the two models. We illustrate here just one
comparison, between the four-constraint model and the five-constraint model. The chi sq column shows
LR, the likelihood ratio between the two models, the k delta column shows that the difference in number
of constraints between the two models is 1 (5 − 4), and the p value column shows that the additional
constraint in the more-complex model (DOTHERIGHTTHING) does not significantly increase model fit.

compare_models(model_max_stressed_ssp, model_dtrt, method = "lrt")

options(digits = 7)

# See Table 20

description chi sq k delta p value
DTRT input ∼ MaxStressed SSP input 1.2279 1 0.26781

Table 20: AICc values for five models.

3.10 Using prior terms to encode bias or avoid over-fitting

So far, we have been simply fitting model weights as closely as possible to the data. But, in both phonology
and machine learning, it is common to build in a bias of some kind to improve generalization to new data.
In its simplest form, this is a bias against over-fitting: by penalizing weights for diverging from a default of
zero, we require each weight in the model to be strongly justified by the data. As we’ll see below, we can
also use more content-ful biases, such as a bias for a certain constraint to have a large weight.

3.10.1 MaxEnt background: The Gaussian prior

In MaxEnt, these biases are most often implemented as a Gaussian prior (Chen & Rosenfeld 1999; Gold-
water & Johnson 2003). Rather than finding the weights that simply maximize the predicted probability of
the data (maximize LLw(d), as above in (16)), we find weights that maximize the expression in (21): the
predicted probability of the data minus a penalty for deviations from a prior distribution over the weight
values. This penalty is known variously as a prior, regularization term, smoothing term, or bias term. In the
case of a Gaussian prior, it has two parameters: µ, a vector of means for the prior on each constraint weight,
and σ, a vector of standard deviations for each prior. All else being equal, smaller values of σ will penalize
deviations from µ more severely than larger ones.

As shown in (21), for each of the M constraints we square the difference between the jth constraint’s
weight wj and the mean weight that we have specified for that constraint’s prior, µj , and divide by the square
of the corresponding standard deviation that we have specified for that constraint, σ2

j . The penalty term is
thus the log of a Gaussian distribution, ignoring a constant.
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(21)

LLw(d)−
M∑
j=1

(wj − µj)
2

2σ2
j

A common agnostic default sets µ to 0 for every constraint and σ to the same value for every constraint
(see Section 4 for selecting good values of σ). Under this parameterization, the larger the constraint weight
in the model, the greater the penalty. The term σ modulates the severity of the penalty. If a constraint Cj

has a large σj , then constraint Cj is tolerant of departures from its default µj – not much data is required to
justify such a departure. If σj is small, then the penalty for departure is greater.

Penalty terms like this are often used in machine learning to avoid over-fitting. Intuitively, if the model
is fit too closely to the training data, it will tend to encode accidental peculiarities of the training data, and
therefore perform worse on new data (see Section 4 for an extended example).

The agnostic default, with µj = 0 for all constraints Cj , has also been used to explain linguistic phe-
nomena. Martin (2007, 2011) exploits the nature of a Gaussian prior: because the penalty for increasing
a constraint weight grows with the square of the weight, it is preferable – in terms of maximizing (21) –
to spread the responsibility for a data pattern out over several moderately-weighted constraints, rather than
piling it up onto one high-weighted constraint. Martin shows that this tendency to spread out weight over
multiple constraints can account for how, over generations, a phonotactic restriction that holds within mor-
phemes, such as the English ban on geminate consonants, can “leak” onto affixed words and compounds, so
that words like given-ness and book-case are fewer than would be expected.

Because of the flexibility in assigning constraint-specific µ and σ values, it is also possible to build in
a default that is phonetically substantive. Wilson (2006), for example, derives constraint-specific σ values
from auditory confusion matrices, to account for typological and experimental biases in velar palatalization.
White (2013) also starts from confusion data, but derives constraint-specific µ values, to account for the
typological and experimental bias against “saltation” patterns.

The Gaussian prior is not the only one possible, although it is the only one currently supported by max-
ent.ot. For example, rather than penalizing the square of a constraint weight’s deviation from its default
(“L2 regularization”), we can penalize the absolute values of the weight deviations (“L1 regularization”),
or even the square roots of the weight deviations, which will have the effect that responsibility for a data
pattern is piled up onto a single constraint as much as possible (for discussion of different regularization
techniques in MaxEnt, see Hughto, Lamont, Prickett & Jarosz 2019). Our code is open-source, and users
comfortable with R should find it feasible to alter the optimize weights function to use their preferred
prior.

3.10.2 Prior terms in maxent.ot

The optimize weights function in maxent.ot has optional arguments for implementing a Gaussian
prior. To use the same value for all constraints, pass in a scalar to the arguments mu and sigma.6

# all constraints have mu of 0, sigma of 1

model_max_stressed_ssp_bias1 <- optimize_weights(

max_stressed_ssp_input, mu = 0, sigma = 1

)

6Note that in MaxEnt Grammar Tool (Hayes et al. 2009) the value “sigma” that the program takes as input is actually the full
denominator of the bias term, 2σ2, whereas in maxent.ot it is just σ. If you are trying to replicate an analysis done in the MaxEnt
Grammar Tool using maxent.ot, you will need to reduce your values of σ accordingly.
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rbind(

unbiased_weights = model_max_stressed_ssp$weights,

biased_weights = model_max_stressed_ssp_bias1$weights

)

# See Table 21

The code above also creates a table to compare the weights in our previous, maximally fitted model to
those in the new model that was fitted with bias to keep all weights small, shown in Table 21. All of the
weights get slightly smaller.

StarComplex Max MaxStressed SSP
unbiased weights 1.0377363 0.07827311 1.461826 1.0047257

biased weights 0.9033141 0.00000000 1.355061 0.9608867

Table 21: Weights resulting from unconstrained fitting vs. fitting with a Gaussian bias for small weights.

We can see why, with the bias in place, these smaller weights were preferred, by calculating the two
models’ log likelihoods and values for the prior:

#log likelihoods

model_max_stressed_ssp$loglik

# -228.811

model_max_stressed_ssp_bias1$loglik

# -228.9289

#priors

sum(((model_max_stressed_ssp$weights - 0)ˆ2)/(2* 1ˆ2))

# 2.114716

sum(((model_max_stressed_ssp_bias1$weights - 0)ˆ2)/(2* 1ˆ2))

# 1.787735

#values of objective function

model_max_stressed_ssp$loglik - sum(((model_max_stressed_ssp$weights - 0)ˆ2)/(2* 1ˆ2))

# -230.9257

model_max_stressed_ssp_bias1$loglik - sum(((model_max_stressed_ssp_bias1$weights - 0)ˆ2)/(2* 1ˆ2))

# -230.7166

The fit of the new model is slightly less good, with a conditional log likelihood of -228.93 instead of
-228.81. But it compensates by having a smaller value for the Gaussian prior, 1.78 instead of 2.11. Once the
priors are subtracted from the log likelihoods, the biased model comes out slightly ahead, at -230.72 instead
of -230.93.

Instead of single values of µ and σ, it is also possible to pass in a vector listing the desired µ and σ for
each constraint. For example, we could put a small σ on the MAXSTRESSED constraint, indicating that more
evidence is required in order for it to depart from its default weights. We do this by setting the argument
sigma to the vector c(1, 1, 0.1, 1), reflecting the order of the constraints in the MaxStressed -
SSP input tibble, where MAXSTRESSED is the third constraint. In this example we will also put non-zero
default weights on the two markedness constraints, using the mu argument.
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model_max_stressed_ssp_bias2 <- optimize_weights(

max_stressed_ssp_input, mu = c(2, 0, 0, 1), sigma = c(1, 1, 0.1, 1)

)

rbind(

unbaised_weights = model_max_stressed_ssp$weights,

biased_weights = model_max_stressed_ssp_bias1$weights,

individually_biased_weights = model_max_stressed_ssp_bias2$weights

)

# See Table 19

We can see in Table 22 that MAXSTRESSED now gets a much smaller weight – and MAX’s weight
increases to partially compensate. The two markedness constraints are not much changed, but we can see
that *COMPLEX, which had the highest default weight, µ*COMPLEX = 2, does have an even higher weight
than it did in the maximally-fitted model (unbiased weights). This newest model does a poor job
of capturing the stress effect, reflecting the bias we built in against the constraint that encodes that effect
(MAXSTRESSED).

StarComplex Max MaxStressed SSP
unbaised weights 1.0377363 0.07827311 1.461826 1.0047257

biased weights 0.9033141 0.00000000 1.355061 0.9608867
individually biased weights 1.1705216 0.82951198 0.2499482 0.8893151

Table 22: Weights resulting from maximally fitted vs. fitting with bias for small weights.

Finally, these values can be read from a file, data frame, or tibble, using the bias input argument.
In this example, we first create a data frame, using the very same µ and σ values as before, then use that
data frame as the bias input argument in optimize weights. The resulting weights are the same, as
expected:

bias_table <- tibble(

Constraint = c("StarComplex", "Max", "MaxStressed", "SSP"),

Mu = c(2,0,0,1),

Sigma = c(1, 1, 0.1, 1)

)

model_max_stressed_ssp_bias3 <- optimize_weights(

max_stressed_ssp_input, bias_input = bias_table

)

model_max_stressed_ssp_bias3$weights

# StarComplex Max MaxStressed SSP

# 1.1705216 0.8295120 0.2499482 0.8893151

4 Cross-validation

Machine learning seeks to find a balance between the extremes of under-fitted models, which do not learn
adequately from the data, and over-fitted models, which learn too well from the data, in the sense that they
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learn accidental details, and accordingly fail to generalize effectively. We will introduce a new and more
realistic example to illustrate these extremes, and to illustrate cross-validation, which provides a process for
finding the best compromise between the two extremes.

4.1 Example from the phonology of Shona

The example we will use comes from Shona, which is the majority language of Zimbabwe, and also spoken
in neighboring countries. The phonology of Shona requires every consonant to be followed by a vowel
(or sometimes [w]), leading to extensive vowel insertion in loanwords, such as [timu] from English [tim]
‘team’. Using various published and unpublished sources, and Uffmann (2007) compiles a corpus of 1709
loans in Shona with inserted vowels, and uses cluster analysis to identify the factors that influence which of
Shona’s five vowels [i, e, a, o, u], is inserted. For word-final inserted vowels, as shown in Table 23, Uffmann
finds that both the preceding consonant and the vowel before that matter. Labials tend to be followed by [u],
as in [timu]7 ‘team’; coronals and dorsals tend to be followed by [i], as in [ejiti] ‘eight’. If the preceding
consonant is a liquid, there is a strong tendency to copy the preceding vowel ([horo] ‘hall’). The tendency
for vowel copying is also seen, more weakly, for non-liquids; for example, [o] is the most likely vowel to be
inserted following [o] and a dorsal consonant ([koko] ‘cork’).8

Number inserted
Preceding V Preceding C i u e o a total example gloss
i labial 40 13 0 4 4 61 timu ‘team’
e,a,o,u labial 17 134 1 14 14 180 tSitofu ‘stove’
u coronal 52 25 0 0 0 77 b

¨
uSi ‘bush’

i,e,a,o coronal 895 2 25 8 27 957 ejiti ‘eight’
i,e dorsal 92 0 6 2 8 108 hwiki ‘wick’
a dorsal 30 2 0 0 7 39 mag

¨
i ‘mug’

o dorsal 3 4 0 23 1 31 koko ‘cork’
u dorsal 1 7 0 0 1 9 b

¨
uuku ‘book’

i liquid 22 2 0 5 6 35 v
¨
iri ‘wheel’

e liquid 15 0 12 19 22 68 v
¨
eri ‘veil’

a liquid 21 8 4 0 8 41 minarari ‘mineral’
o liquid 1 0 0 44 4 49 horo ‘hall’
u liquid 1 29 1 21 4 56 furu ‘fool’

Table 23: Word-final vowel insertion rates in Shona loanwords (Uffmann 2007: pp. 52–57).

Uffmann finds that similar factors are at work in word-internal inserted vowels, as shown in Table 24.
If the following consonant is an obstruent or nasal, then [i] is always inserted ([sipeja] ‘spare’), but if the
following consonant is a liquid then both the preceding consonant’s place and the following vowel’s quality
play roles.9

7Uffmann’s transcriptions do not indicate tone.
8For expository simplicity, we ignore two further distinctions that Uffmann’s modeling identified. For example, a sequence of

i + labial obstruent is usually followed by inserted [i], as in [tSipi] ‘sale’, from English [tSip] ‘cheap’, but a sequence of i + labial
sonorant is usually followed by inserted [u], as in [timu]. Similarly, consonant manner matters for sequences of u + coronal.

9We again ignore some complexities in Uffmann’s findings, by omitting the 18 words that show insertion between a consonant
and a glide.
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Number inserted
preceding C following C foll. V i u e o a total example gloss
anything obstruent or nasal anything 129 0 0 0 0 129 sipeja ‘spare’
labial liquid i 20 13 0 0 1 34 firidZ

¨
i ‘fridge’

labial liquid o 0 12 0 6 0 18 porofiti ∼ purofiti ‘profit’
labial liquid e,a,u 1 86 0 0 0 87 pureSa ‘pressure’
coronal liquid anything 43 11 1 1 1 57 d

¨
iriNi ‘drink’

dorsal liquid i,e,a 51 0 0 0 1 52 g
¨
irini ‘green’

dorsal liquid o 9 0 0 6 0 15 g
¨
irovu ∼ g

¨
orovu ‘glove’

dorsal liquid u 0 3 0 0 0 3 g
¨
uruu ‘glue’

Table 24: Word-internal vowel insertion rates in Shona loanwords (Uffmann 2007: pp. 70–72).

For this illustration, we consider just five candidates for each word type – one for each possible inserted
vowel – and a set of 55 DEP constraints (McCarthy & Prince 1994), of varying degrees of specificity. The
constraints are listed in Table 25. For each vowel X, there is a simple DEP-X constraint against inserting
it; a DEP-X/C T constraint against inserting it between any consonant and an obstruent; four DEP-X/W
constraints against inserting it after each consonant type W; and five DEP-X/NEAR Y constraints against
inserting it when the nearest vowel is Y, where “nearest” means preceding vowel for word-final inserted
vowels, and following vowel for word-internal inserted vowels.

Basic DEP-X: DEP-I, DEP-U, DEP-E, DEP-O, DEP-A

DEP-X/C T: DEP-I/C T, DEP-U/C T, DEP-E/C T, DEP-O/C T, DEP-A/C T
DEP-X/W : DEP-I/LAB , DEP-I/COR , DEP-I/DORS , DEP-I/LIQ ,

DEP-U/LAB , etc. (20 constraints)
DEP-X/NEAR Y: DEP-I/NEAR I, DEP-I/NEAR U, DEP-I/NEAR E, DEP-I/NEAR O,

DEP-I/NEAR A, DEP-U/NEAR I, etc. (25 constraints)

Table 25: Constraints for Shona epenthesis.

Table 26 shows the upper left corner of the input file, Shona tableaux.csv. There are 21 tableaux
and 55 constraint columns in the full file. Each tableau is labeled with one word input, such as /tim/, for
concreteness, but represents the set of all words that give rise to the same set of violation profiles. Thus,
/tim/ represents all 50 words that end with a labial consonant preceded by /i/.
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Input Output Frequency Dep-i Dep-u Dep-e Dep-o Dep-a Dep-i/i Dep-u/i ...
tim timi 31 1 1 ...
tim timu 11 1 1 ...
tim time 0 1 ...
tim timo 4 1 ...
tim tima 4 1 ...
tSitof tSitofi 14 1 ...
tSitof tSitofu 106 1 ...
tSitof tSitofe 1 1 ...
tSitof tSitofo 13 1 ...
tSitof tSitofa 8 1 ...
...

Table 26: Constraints for Shona epenthesis.

The R code below reads in the data, and adds an extra column with the number of words each tableau
represents, for use in plots later on.

shona_input <- read_csv("data/Shona_tableaux.csv")

# display top left corner of tableaux

shona_input[1:10,1:10]

# make a version with a column for total frequency of each tableau

# (will be useful for plots below)

# This works because every tableau in this data set has a unique input

shona_input_with_total <- shona_input %>%

group_by(Input) %>%

mutate(tableau_freq = sum(Frequency))

With the data set in place, let us now turn to the question of over- versus under-fitting.

4.2 Using cross-validation to explore different values of sigma

This section steps through cross-validation results for different values of σ. Readers already familiar with
cross-validation for setting hyper-parameters may wish to skip ahead to Section 4.3, where the steps are
telescoped together into one R function.

If our goal is to achieve the closest possible fit to the data with these constraints, we should set σ to
be very large, say 1000, so that each constraint is very free to depart from its prior mean µ (which we
will set to 0, although it won’t make much difference, because of the large σ). The R code below does
this, and then plots the observed probabilities of the training data against their predicted probabilities under
the fitted MaxEnt model (Figure 4).10 To achieve convergence for this input file, it proved necessary to
use optimize weights’s upper bound parameter, which tells the optimizer not to consider weights
greater than, in this case, 10.11

10There is some redundancy in the plot. Each point represents one candidate, and when the probabilities of four candidates in a
tableau are known, the probability of the fifth follows.

11Without an upper bound on constraint weights, depending on the user’s particular R environment they may receive an error
message from the stats::optim function. When this happens, our package also supplies the following, to help the user solve
the problem: “This error indicates that the likelihood function has returned a non-finite value because the constraint weights have
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shona_1000 <- optimize_weights(

shona_input, mu = 0, sigma = 1000, upper_bound = 10

)

shona_1000_predictions <- predict_probabilities(

shona_input, constraint_weights = shona_1000$weights

)

shona_1000_predictions$loglik

# -874.2246

shona_1000_predictions$predictions %>%

ggplot(aes(x=Observed, y=Predicted)) +

geom_point(

shape=21, fill=alpha("blue", 0.2), stroke=1,

size=log(shona_input_with_total$tableau_freq)) +

geom_abline(slope=1, intercept=0, color="grey") +

xlab("observed probability of each candidate") +

ylab("predicted probabilities") +

theme_classic(base_size=16)

Figure 4: Observed vs. predicted probability, model fitted with σ = 1000. Each point is a candidate; the
size of the point is proportional to the log of number of words that the candidate’s tableau is based on.
Candidates on the diagonal line are fitted perfectly.

But have we over-fitted the data? In machine learning, a popular technique to answer the question is
cross-validation (Stone 1974; Geisser 1975; Browne 2000; for a linguistic example, see pp. 14-15 of Bres-
nan, Cueni, Nikitina & Baayen 2007). Later in this section we will show how to use the maxent.ot
package’s cross validate function to automate the process, but first, for expository purposes, we will
build up the process of cross-validation step by step.

become too large. You can resolve this by passing in a lower upper bound on maximum weights using the ‘upper bound’ argument,
or by introducing a stronger bias towards lower weights by manipulating the mu and sigma parameters”
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Instead of fitting the grammar to all the data, we will randomly divide the data into 80% to be used
for training, and then see how well that grammar fits the held-out 20%. If the fit is very poor, then it is
possible that the grammar is over-fitted, and is modeling peculiarities of the training data that, because they
are not systematic, do not hold of the held-out data. It is also possible that the grammar is under-fitted, and is
ignoring systematic properties of the training data that are also present in the held-out data. We will diagnose
over- vs. under-fitting below by exploring different values of σ.

First, we use the partition data function to split the data into five random slices, then we choose
one slice to hold out; we will train on the other four slices. Making the random division is slightly compli-
cated, because in this case we don’t want to select 80% of tableaux to train on, but rather 80% of words.
partition data and populate tableau functions takes care of this. Later, we will see that we don’t
even need to call these two functions directly, because the cross validate function automates the work
that we are breaking down step by step here for expository purposes.

# Housekeeping needed to format data the way partition_data() is expecting

# We're using internal functions from maxent.ot using the ::: operator

processed_input <- maxent.ot:::load_input(shona_input)

data <- processed_input$data

# slice data into 5 random parts

partitions <- maxent.ot:::partition_data(data, k=5)

# slice number 1 will be held out

hold_out <- 1

# the training slices

training_part <- partitions %>%

filter(partition != hold_out)

# the held-out slice

test_part <- partitions %>%

filter(partition == hold_out)

# housekeeping to set up data the way populate_tableau() expects

training_data <- data %>%

mutate(Frequency = 0)

test_data <- training_data

# format the training and held-out data into tableaux

training_tableau <- maxent.ot:::populate_tableau(training_data, training_part)

test_tableau <- maxent.ot:::populate_tableau(test_data, test_part)

Now we have a set of training tableaux and a set of testing tableaux. We fit a model to the 80% of data
that were selected for training, again using a very permissive σ of 1000:

# Fit model to training data

shona_1000_crossval_model <- optimize_weights(

training_tableau, mu = 0, sigma = 1000, control_params = NA, upper_bound = 10

)
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shona_1000_crossval_model$loglik

# Model's loglik = -698.4757

We can use predict probabilities to see how well the resulting model fits both the 80% of data
it was trained on, and the 20% of data that were held out. Raw log likelihood is not informative, because log
likelihood is dependent on the number of observations (each observation adds to the sum). Therefore, we
divide log likelihood by the number of observations, so that we can directly compare the fit to the training
data and the fit to the held-out data. The average log likelihood shown in the R code below is, as expected,
better for the training data, at -0.520, and worse (more negative) for the held-out data, at -0.538 (if you run
the code yourself, you will get different numbers, because of the randomness in dividing up the data into
training vs. held-out sets). The plots in the left column of Figure 5 show the model’s tight fit to the training
data, and more scattered fit to the held-out data.

# How does it do on the training data?

predictions_training <- predict_probabilities(

training_tableau, shona_1000_crossval_model$weights

)

predictions_training$loglik / sum(predictions_training$predictions$Freq)

# average log likelihood: -0.5204737

# How does it do on the held-out data?

predictions_test <- predict_probabilities(

test_tableau, shona_1000_crossval_model$weights

)

predictions_test$loglik / sum(predictions_test$predictions$Freq)

# average log likelihood: -0.5379555

We repeat the procedure here for σ = 0.1 and σ = 3 (the right and middle columns of Figure 5). For
the very small σ = 0.1, the fit to both training and held-out data is poor; the model has failed to capture
important patterns in the data, and thus does a poor job of predicting both the data it was trained on and
new data. But for the intermediate σ value of 3, while fit to the training data is slightly poorer (average
log likelihood of -0.524, vs. -0.520 when σ = 1000), the fit to the held-out data has actually improved
somewhat, to an average log likelihood of -0.532 (vs. -0.538 for σ = 1000). This suggests that the model
with σ = 1000 was fitting the training data too closely, capturing aspects of it that were mere artefacts of
sampling, and thus, incorrectly, predicting those same artefacts to occur new data. An intermediate σ of 3
seems to smooth over more of those artefacts and do a slightly better job on the held-out data.
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Figure 5: The predictions of the model fitted with σ = 1000 (training average LL = −0.520, test average LL =
−0.538), σ = 0.1 (training average LL = −0.834, test average LL = −0.829), and σ = 3 (training average LL
= −0.524, test average LL = −0.532).

All of the results in this subsection were just for one random partition of the data into 80% vs. 20%, and
may not be terribly representative. The following subsection uses a built-in function from the maxent.ot
package to automate and improve this randomization, which allows us to easily explore a range of sigma
values.

4.3 Choosing the best value for sigma

In the previous subsection, we trained the grammar on random slices 1 through 4, holding out slice 5. To
perform a five-fold cross-validation, we would next train on slices 1, 2, 3, and 5, and test on held-out slice 4;
then train on slices 1, 2, 4, and 5, and test on held-out slice 3; etc. We can then obtain the mean log likelihood
from the trained model’s predictions on the held-out data, over these five runs. This will give us a stabler
picture (though still subject to some random noise) of how well a grammar fitted to a random 80% of the
data fares on the remaining 20%.

The cross validate function allows us to automate this k-fold cross-validation, not only for k = 5
but for any choice of k > 1. Furthermore, we can ask the function to explore a range of µ and σ values. In
this example mu values is set to be 0 since we are not interested in exploring different values of µ (though
if we were we could pass in a similar vector of values; see the documentation of cross validate in the R
package). By default the length of the µ and σ vectors needs to be the same, but specifying grid search
= TRUE runs the pairwise combination of all the values of µ with all the values of σ.
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sigmas_to_try <- c(

100, 75, 50, 40, 30, 20, 15, 10, 9, 8, 7, 6, 5.5,

5, 4.5,4, 3.5, 3, 2.5, 2, 1.5, 1, 0.8, 0.7, 0.6, 0.5

)

# This might take some time

shona_crossval_5 <- cross_validate(

shona_input,

k = 5,

mu_values = 0,

sigma_values = sigmas_to_try,

upper_bound = 10,

grid_search = TRUE

)

shona_crossval_5

# Looks like

# model_name mu sigma folds mean_ll_test mean_ll_training

# 1 shona_input 0 100 5 -183.3994 -696.2001

# 2 shona_input 0 75 5 -183.7278 -696.0800

# 3 shona_input 0 50 5 -183.7573 -696.0632

# ...

The resulting data frame, the top of which is shown in the R code above, has one row for each value of
σ, showing the mean log likelihoods for the held-out (“test”) data (not the mean per data point, but the mean
over all k = 5 folds) and the training data. We can do the same again for k = 10: the data are divided into
10 slices, then trained on 1 through 9 and tested on 10, etc.

# This might take some time

shona_crossval_10 <- cross_validate(

shona_input, k = 10, mu_values = 0,

sigma_values = sigmas_to_try, upper_bound = 10, grid_search = TRUE

)

The code below plots the fits to training and held-out data for each value of σ for both k = 5 and k = 10,
averaging over the number of data points for comparability:

# Format k=5 set for plotting

# get approximate number of data points for training and held-out for k=5

approx_num_of_train_5 <- sum(shona_input$Frequency) * 0.8

approx_num_of_testing_5 <- sum(shona_input$Frequency) * 0.2

# Get row corresponding to best sigma

best_row_5 <- shona_crossval_5 %>%

filter(mean_ll_test == max(mean_ll_test))

# find best sigma value, for placing vertical line

best_sigma_5 <- best_row_5$sigma
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# find best fit, for placing horizontal line

best_fit_to_test_5 <- best_row_5$mean_ll_test / approx_num_of_testing_5

# Convert to format used in plotting, normalize LL by count

shona_crossval_5_df <- shona_crossval_5 %>%

pivot_longer(cols=c(mean_ll_training, mean_ll_test),

names_to='type', values_to='ll') %>%

mutate(type=ifelse(type == 'mean_ll_training',

'training data',

'held-out data'),

ll=ifelse(type=='training data',

ll/approx_num_of_train_5,

ll/approx_num_of_testing_5),

best_sigma=best_sigma_5,

best_fit=best_fit_to_test_5)

# Do the same for k=10

approx_num_of_train_10 <- sum(shona_input$Frequency) * 9/10

approx_num_of_testing_10 <- sum(shona_input$Frequency) * 1/10

# Get row corresponding to best sigma

best_row_10 <- shona_crossval_10[which.max(shona_crossval_10$mean_ll_test),]

# find best sigma value, for placing vertical line

best_sigma_10 <- best_row_10$sigma

# find best fit, for placing horizontal line

best_fit_to_test_10 <- best_row_10$mean_ll_test / approx_num_of_testing_10

shona_crossval_10_df <- shona_crossval_10 %>%

pivot_longer(cols=c(mean_ll_training, mean_ll_test),

names_to='type', values_to='ll') %>%

mutate(type=ifelse(type == 'mean_ll_training',

'training data',

'held-out data'),

ll=ifelse(type=='training data',

ll/approx_num_of_train_10,

ll/approx_num_of_testing_10),

best_sigma=best_sigma_10,

best_fit=best_fit_to_test_10)

shona_full_crossval <- rbind(shona_crossval_tmp, shona_crossval_10_tmp) %>%

mutate(folds=fct_relevel(ifelse(folds == 5, 'k=5', 'k=10'), 'k=5'))

# Make plot

shona_full_crossval %>%

ggplot(aes(as.numeric(sigma), ll, fill=type, color=type, shape=type, lty=type)) +

geom_point() +

geom_line() +

xlab("sigma value used in training") +

ylab("average log likelihood / N") +
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scale_x_continuous(trans='log10', breaks=c(0.5, 2, 5, 20, 100)) +

geom_abline(aes(slope=0, intercept=best_fit), color="grey", lty=2) +

geom_vline(aes(xintercept=as.numeric(best_sigma)), col="grey", lty=2) +

theme_classic(base_size=16) +

theme(legend.title= element_blank(), panel.spacing = unit(1, "lines")) +

facet_grid(˜ folds)

Figure 6 shows the resulting plot. In each subplot, the fit to the training data (blue triangles on dashed
line) increases asymptotically as σ increases. This is to be expected: the higher the σ, the more closely the
model’s weights can fit the training data. But the fit to the held-out data (red circles on solid line) reaches
a maximum somewhere between σ values of 2 and 5, and then declines somewhat for higher values of σ,
because these higher values produce over-fitting. Taking the two plots together, we see that the best σ for
this data set is somewhere around 3 to 5, with little difference within that range.

Figure 6: Mean normalized log-likelihood for training data and held-out data during k-fold cross validation
as a function of σ.

The cross validate function thus allows the researcher to explore values of the bias parameters µ
and σ to find those that are suitable for their data set. It would be ideal if there were a single “find optimal
sigma” or “find optimal mu” function one could call, but the curve for the fit to held-out data as a function
of σ is not guaranteed to be convex–visual inspection shows that it is not completely convex in Figure
6, though this could be an artefact of the random division of the data into slices–so until the relationship
of bias terms to fit-to-held-out is better understood, we leave this an area for researchers to explore using
cross validate.

(Henriksson 2022) demonstrates a different use of cross-validation. As in our Shona example, Henriks-
son uses cross-validation to assess how well models perform on untrained data, but instead of comparing
models with different prior terms, Henriksson compares models with different sets of constraints, and also
looks at how much individual constraints’ weights vary across different slices of training data. Our cross -
validate function can be used for these purposes, except that instead of a single call to cross vali-
date with multiple µ and σ values, the user could call cross validate once for each model of interest,
giving a single value for µ and a single value of σ each time.
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5 Conclusion and further resources

This paper has presented a gentle (we hope) introduction to Maximum Entropy Optimality analyses, il-
lustrated using the maxent.ot R package. We showed that maxent.ot supplies a variety of useful
functionality for MaxEnt analyses, including

• Fitting constraint weights to data consisting of constraint violation profiles, with and without a Gaus-
sian bias term.

• Predicting probability distributions over candidates given a set of violation profiles and a vector of
constraint weights.

• Model comparison using AIC, AICc, BIC, and the likelihood ratio test.

• k-fold cross-validation to determine optimal bias parameters.

We summarize here a typical workflow:

1. Create an input dataframe or tibble, either directly or by reading from a file, using the format
shown in section 3.3 to specify underlying and surface forms, frequencies, and constraint violations.

2. Using an input dataframe or tibble, which we’ll refer to as my input, fit a MaxEnt model to
it using my model <- optimize weights(my input) function. This returns a fitted model
with attributes including weights.

• To impose a Gaussian prior on constraint weights, add the arguments mu and
sigma, as in my model <- optimize weights(my input, mu = 0, sigma =
c(1, 1, 0.1, 1))

• If this produces an error message, impose a strict upper bound on constraint weights, by
adding the argument upper bound, as in my model <- optimize weights(my in-
put, upper bound = 10)

3. Find out what probabilities the fitted model predicts, using the my predictions <- predict -
probabilities(my input, my model$weights) . Or, find out what a different vector of
constraint weights predicts by replacing my model$weights with a different weight vector.

4. Compare models using BIC by calling compare models(my model, my model2, my -
model3, method="bic"). Or, replace "bic" with "aic" to use AIC, "aic c" to use AICc,
or "lrt" to use the likelihood ratio test.

5. To use cross-validation to find good values of µ and σ, use the cross validate function, as
in my crossval <- cross validate(my input, k = 10, mu values = c(0,1),
sigma values = c(1, 2, 4, 8, 16), grid search = TRUE). In this case, we have
specified 10-fold cross-validation (k = 10), and a “grid search” trying all combinations of µ and σ
given.

• To make plots of fit to held-out and training data over different values of bias terms, see our code
in section 4.3.

You can get more information about maxent.ot in the following ways:

• maxent.ot is free and open-source software released under the GNU General Public License v3.0.
The full source code can be found at https://github.com/connormayer/maxent.ot.
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• More detailed documentation for each function can be found by typing ? followed by its name in the R
console (e.g., ?optimize weights will bring up documentation about the optimize weights
function). This is particularly useful for viewing the full set of arguments a function accepts.

• You can view the documentation and vignettes for maxent.ot on the R CRAN repository, which
will be linked to in the README on the maxent.ot GitHub page. The documentation contains
similar information to what you can view using the ? operator as in the previous bullet point, and the
vignettes demonstrate several use cases that go into more detail than what has been presented in this
paper.

Finally, because this is free and open-source software, we welcome contributions! If you find bugs
or have additional features you would like to see added, please contact cjmayer@uci.edu. We hope that
this package will be a useful tool in future research for both proponents and critics of MaxEnt models of
phonology.

Appendix A: OTSoft format

maxent.ot also supports the OTSoft file format (Hayes et al. 2013). An example of this formatting is
shown in Table 27, and the corresponding text file can be found at data/simple input otsoft.txt
in the tutorial materials.

StarComplex Max
StarComplex Max

"stad "stad 40 1
"tad 60 1

"gKav "gKav 60 1
"gav 40 1

spa.gE."ti spa.gE."ti 10 1
spa.gE."ti 90 1

gKy."o gKy."o 30 1
gy."o 70 1

Table 27: OTSoft formatted input.

A few things to note about this format:

• Columns are tab-delimited.

• The first two rows contain constraint names. The first four columns are not named. The first row
contains the ‘long names’ and the second row contains the ‘short names’. The ‘short names’ row is
maintained for backwards compatibility with the OTSoft format, and is not used by maxent.ot.

• Each row following the constraint names consists of the following columns:

– The underlying representation. This is only specified for the first occurrence of each input in the
file. Rows with no values in this column are assumed to have the same input as closest non-empty
value above.

– The surface representation.

– The observed frequency counts.

– The violation profile of this input-output pair. This consists of one column for each constraint.
Values must be numeric. Empty cells and cells with 0 violations are treated equivalently.
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maxent.ot provides the otsoft tableaux to df function that converts files in OTSoft format
to the dataframe format described in Section 3.3. If using the OTSoft format for the tutorial, you can
replace the code in Section 3.3 with the line below.

simple_input <- otsoft_tableaux_to_df("data/simple_input_otsoft.txt")

There is no need to use the OTSoft format aside from personal preference or compatibility with existing
data.

Appendix B: The temperature parameter

Previous work (e.g., Hayes & Wilson 2008; Hayes et al. 2009; Mayer 2021) has used a temperature
parameter when modeling forced-choice wug test data (Ackley, Hinton & Sejnowski 1985:p. 150–152).
The motivation behind this parameter is that such wug tests typically display responses that are less cat-
egorical – closer to 50/50 – than the statistics seen in the lexicon. This behavior is taken to be driven by
task factors rather than grammatical factors: e.g., because participants are explicitly considering the choice
between two (or more) different forms. Thus, rather than adjust the grammar itself to model wug data, an
adjustment is made to the way probabilities are derived from the grammar.

Equation (22) shows the equation for deriving the probability of a candidate given the corresponding
weights and violation profiles with a temperature term T included. Increasing T has the effect of making
the probabilities of all candidates closer to equal.

(22)

P (y|x) = exp(−H(x, y)/T )∑
y′∈Y(x) exp(−H(x, y′)/T )

.

Equation (8) in the body of the paper can be considered a special case of this equation where T = 1.
Although the linguistic applications are less clear, T can also be set to a value less than 1. As T is

decreased, probability shifts away from the low-harmony candidates and onto the high-harmony candidate,
until, when T is near 0, the highest-harmony candidate (or candidates, if there is a harmony tie) is predicted
to occur nearly all the time. Negative values of T are even possible; they cause more probability to be
assigned to lower-harmony candidates (it is even harder to imagine linguistic applications of negative T ).

The temperature parameter can be set using the temperature argument of the predict proba-
bilities function, as below, where the four-constraint grammar for child French generates predictions.
The result, shown in (28) is that candidates still lean in the direction of the observed probabilities, but they
are closer to 50-50 than they were before, in the rightmost column of (15), when a temperature of 1 was
being implicitly used for generating predictions from the same grammar.

# Call predict_probabilities with the sample parameters used to generate

# predictions in last column of Table 12, but with temperature = 5.

result <- predict_probabilities(

max_stressed_ssp_input, model_max_stressed_ssp$weights, temperature=2

)

result$loglik

# -239.3805
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result$predictions

# Table 28

UR SR Freq StarComplex Max MaxStressed SSP Predicted Observed Error
"stad "stad 40 1 0 0 1 0.4375327 0.4 0.03753267
"stad "tad 60 0 1 1 0 0.5624673 0.6 -0.03753267
"grav "grav 60 1 0 0 0 0.5624672 0.6 -0.03753279
"grav "gav 40 0 1 1 0 0.4375328 0.4 0.03753279
spagE"ti spagE"ti 10 1 0 0 1 0.2724764 0.1 0.17247640
spagE"ti pagE"ti 90 0 1 0 0 0.7275236 0.9 -0.17247640
gry"jo gry"jo 30 1 0 0 0 0.3823155 0.3 0.08231551
gry"jo gy"jo 70 0 1 0 0 0.6176845 0.7 -0.08231551

Table 28: The output of the predict probabilities function with temperature=2.

For example, in Table 15, the probabilities of a faithful vs. repaired realization of the onset cluster
in /stad/ are 0.38 vs. 0.62. Here they are 0.44 vs. 0.56. The basic preference for repair remains, but the
probabilities become closer to 50/50.
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