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Why does labial typology look the way it does?

General observation: Languages tend to use different lip shapes for different
degrees of labial constriction.

This presentation: \We suggest that this is in part due to quantal biomechanical
properties of these shapes that allow for robust, feed-forward control.

Let’s start by looking at the 451 languages in the UCLA Phonological Segment
Inventory Database (UPSID; Maddieson 1984, Maddieson and Precoda 1990)



UPSID labial typology (451 languages)

Though not without exceptions, there'’s a clear generalization:

e Labial stops: 99.8% bilabial (0.2% labiodental)
e Labial fricatives: 71% labiodental (29% Dbilabial)
e Labial approximants: 98% rounded (2% labiodental)




Why should this be the case?

A language could produce different degrees of constriction by varying the
activation of a single labial movement:

e Labial stop: p]
e Labial fricative: P!
e Labial approximant: [p]

Languages don’t do this!




Why these mechanisms?

Mechanisms built for a task will be robust to noisy, everyday conditions
(e.g., Loeb 2012)

e Allow a large margin of error
e Optimize for feed-forward function (e.g., Perkell 2012; Guenther 2016)

Speech mechanisms with such properties are associated with the term quantal
(e.g., Stevens 1972; Stevens 1989; Stevens and Keyser 2010)

e Large variation in input - little response in output



Past work on quantal biomechanics

Limited discussion of quantal biomechanical effects
(e.g., Fujimura and Kakita 1979; Fujimura 1989; Perkell et al. 2004; Perkell 2012)

Simulation studies have demonstrated quantal effects in

e The soft palate (Gick et al. 2014; Anderson et al. 2019)
e The larynx (Moisik and Gick 2017)
e Lip rounding with variations in muscle stiffness (Nazari et al. 2011)

Not all sets of muscle activations exhibit quantality!
(Gick et al. 2014; Moisik and Gick 2017)




The current study

Tests for quantal effects in the three canonical lip
postures using a 3D finite-element face model.

e Biomechanical modeling platform Artisynth
(e.g., Stavness et al. 2012)

e Simulates biomechanics and actions of fixed
groupings of muscles

e Passive tissue mechanics, active muscle
stress and intrinsic stiffness, volume
preservation, gravity




Assumptions & Predictions

Assumptions

e Speech movements are generated by functionally independent groupings of

muscles that activate in fixed proportion (modules)
(e.g., Bernstein 1967; Ting et al. 2015)

e Selected in part based on intrinsic quantal biomechanical robustness



Assumptions & Predictions

Predictions

Canonical lip modules will be

1. Robust across a wide range of activation levels

2. Robust to interference from surrounding muscles



Simulation 1: Robustness to varying activation

e Defined muscle groupings based on known muscle involvements
(Lightoller 1925; Stavness et al. 2013)

e Each posture uses a different set of muscles (sometimes overlapping)

e No “right” choice: many inputs will contain the necessary mechanic
(e.g., Loeb 2012)
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Simulation 1: Robustness to varying activation
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Simulation 1; Results

Non-linearities occur as predicted!

Grey boxes: areas where 95% of
distance to maximum closure has
been covered
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Simulation 1; Results

Takeaway

All three speech postures are
robust to variation in activation levels

of relevant muscle groups
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Simulation 2: Robustness to surrounding muscles

Question: Are these postures robust to interference from surrounding muscles?

Focus on approximant (activating OOP) ﬁ“ﬂ I

e No contact, easier to see variable effects

Two types of simulations:

1. Is lip constriction stable when there is surrounding muscle noise?

2. How does degree of OOP activation affect this stability?
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Simulation 2: Type 1

Sampled OOP activation ~ U(0%, 100%)

1. Without activation of surrounding muscles (same as Sim. 1)

2. With activation of surrounding muscles ~ U(0%, 10%)
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Simulation 2: Type 1 Results
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Simulation 2: Type 2

Sampled OOP activation from two distributions
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Simulation 2: Type 2 Results
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Simulation 2: Type 2 Results
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Simulation 2: Type 2 Results

Higher OOP activation reduces interference from surrounding muscles

e Variability in region is significantly lower

The region falls in the quantal region in Simulation 1!

e Same region is robust to both intrinsic and extrinsic activation noise
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Discussion

Why don’t we see labial inventories that look like [p], [p], [P]?

e The regions in which frication and approximation are achievable using this
configuration are biomechanically unstable.

The sets of muscles associated with the three canonical lip postures are:

1. Robust to intrinsic activation noise (Simulation 1)
2. Robust to extrinsic noise from surrounding muscles  (Simulation 2)
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Discussion

Suggests a biomechanical contribution to typological distribution of labial sounds.

What about bilabial fricatives?

e The mechanism for bilabial fricative constriction may not be the same as for
bilabial stop closure (e.g., lip compression; Okada 1991)

e Serves as competing alternative to labiodental fricatives

22



Discussion

Bears on theories of speech organization and motor control

e Degree of constriction and involved articulators are not independent parameters!

e Primitive units of organization are modular muscle groupings that activate in a

fixed proportion to achieve a particular functional goal
(e.g., Bernstein 1967; Safavynia and Ting 2013; Gick and Stavness 2013; Ting et al. 2015)

Understanding these structures provides explanatory power for linguistic phenomena.
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Quantal regions

A region of a function in which large
variation (error) in one dimension effects
little response in some other (task)
dimension

e Solid line: strongly quantal
e Dashed line: fairly quantal
e Dotted line: not quantal
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Simulation 1 & 2: Muscle sets and ranges

OOPs | OOPi | OOMs | OOMi | MENT | RIS | LLSAN | LLS
Bilabial — — 30 30 20 20 - -
Labiodental — — — 26 26 26 36 50
Rounded 40 40 - — — - — —

Table 1: Maximum muscle stress (kPA) used for

the three lip constrictions.

OOMs/i: superior/inferior
marginal orbicularis oris
OOPsli: superior/inferior
peripheral orbicularis oris
MENT: mentalis

RIS: risorius

LLSAN: levator labii superioris
alaeque nasi

LLS: levator labii superioris

Simulation 2 noise muscles: above muscles, plus depressor anguli
oris, buccinator, depressor labii inferior, levator anguli oris,
zygomaticus




Simulation 1: Q-scores
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Simulation 1 & 2: Calculating opening size

Simulation 1: Count pixels in coronal images, convert to mm?

e Labiodental calculated between lower lip and upper teeth
e Other sounds between lower lip and upper lip

Simulation 2: Calculate minimum opening size along a series of cutting planes
e Necessary because of large number of simulations

Probabilistic sampling of inputs done using the BatchSim tool
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