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Why does labial typology look the way it does?

General observation: Languages tend to use different lip shapes for different 
degrees of labial constriction.

This presentation: We suggest that this is in part due to quantal biomechanical 
properties of these shapes that allow for robust, feed-forward control.

Let’s start by looking at the 451 languages in the UCLA Phonological Segment 
Inventory Database (UPSID; Maddieson 1984, Maddieson and Precoda 1990)
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UPSID labial typology (451 languages) 
Though not without exceptions, there’s a clear generalization:

● Labial stops: 99.8% bilabial (0.2% labiodental)
● Labial fricatives: 71%    labiodental (29%  bilabial)
● Labial approximants: 98%    rounded (2%    labiodental)
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Why should this be the case?
A language could produce different degrees of constriction by varying the 
activation of a single labial movement:

● Labial stop: [p]
● Labial fricative: [p̞]
● Labial approximant: [p̞̞]

Languages don’t do this!
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Why these mechanisms?
Mechanisms built for a task will be robust to noisy, everyday conditions           
(e.g., Loeb 2012)

● Allow a large margin of error
● Optimize for feed-forward function (e.g., Perkell 2012; Guenther 2016)

Speech mechanisms with such properties are associated with the term quantal 
(e.g., Stevens 1972; Stevens 1989; Stevens and Keyser 2010)

● Large variation in input      little response in output 
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Past work on quantal biomechanics
Limited discussion of quantal biomechanical effects                                             
(e.g., Fujimura and Kakita 1979; Fujimura 1989; Perkell et al. 2004; Perkell 2012)

Simulation studies have demonstrated quantal effects in

● The soft palate (Gick et al. 2014; Anderson et al. 2019)

● The larynx (Moisik and Gick 2017)

● Lip rounding with variations in muscle stiffness (Nazari et al. 2011)

Not all sets of muscle activations exhibit quantality!                                                    
(Gick et al. 2014; Moisik and Gick 2017)
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The current study
Tests for quantal effects in the three canonical lip 
postures using a 3D finite-element face model.

● Biomechanical modeling platform Artisynth 
(e.g., Stavness et al. 2012)

● Simulates biomechanics and actions of fixed 
groupings of muscles

● Passive tissue mechanics, active muscle 
stress and intrinsic stiffness, volume 
preservation, gravity
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Assumptions & Predictions
Assumptions

● Speech movements are generated by functionally independent groupings of 
muscles that activate in fixed proportion (modules)                                            
(e.g., Bernstein 1967; Ting et al. 2015)

● Selected in part based on intrinsic quantal biomechanical robustness
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Assumptions & Predictions
Predictions

Canonical lip modules will be

1. Robust across a wide range of activation levels

2. Robust to interference from surrounding muscles
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Simulation 1: Robustness to varying activation
● Defined muscle groupings based on known muscle involvements          

(Lightoller 1925; Stavness et al. 2013)

● Each posture uses a different set of muscles (sometimes overlapping)

● No “right” choice: many inputs will contain the necessary mechanic            
(e.g., Loeb 2012)
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Simulation 1: Robustness to varying activation

● Activated muscle groupings up to 
maximum stresses 

● Measured opening size at different 
activation levels
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Simulation 1: Results

Non-linearities occur as predicted!

● Grey boxes: areas where 95% of 
distance to maximum closure has 
been covered
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Simulation 1: Results

Takeaway 

All three speech postures are       
robust to variation in activation levels  
of relevant muscle groups
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Simulation 2: Robustness to surrounding muscles
Question: Are these postures robust to interference from surrounding muscles?

Focus on approximant (activating OOP)

● No contact, easier to see variable effects

Two types of simulations:

1. Is lip constriction stable when there is surrounding muscle noise?

2. How does degree of OOP activation affect this stability?
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Simulation 2: Type 1
Sampled OOP activation ~ U(0%, 100%)

1. Without activation of surrounding muscles (same as Sim. 1)

2. With activation of surrounding muscles ~ U(0%, 10%)
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Simulation 2: Type 1 Results
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Simulation 2: Type 2
Sampled OOP activation from two distributions

1. Low activation ~ N(10%; 10%)

2. High activation ~ N(80%; 10%)

Other muscles ~ U(0%, 10%)
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Simulation 2: Type 2 Results
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Simulation 2: Type 2 Results
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Simulation 2: Type 2 Results
Higher OOP activation reduces interference from surrounding muscles

● Variability in high activation region is significantly lower

The high activation region falls in the quantal region in Simulation 1!

● Same region is robust to both intrinsic and extrinsic activation noise
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Discussion
Why don’t we see labial inventories that look like [p], [p̞], [p̞̞]?

● The regions in which frication and approximation are achievable using this 
configuration are biomechanically unstable.

The sets of muscles associated with the three canonical lip postures are:

1. Robust to intrinsic activation noise (Simulation 1)
2. Robust to extrinsic noise from surrounding muscles (Simulation 2)
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Discussion
Suggests a biomechanical contribution to typological distribution of labial sounds.

What about bilabial fricatives?

● The mechanism for bilabial fricative constriction may not be the same as for 
bilabial stop closure (e.g., lip compression; Okada 1991)

● Serves as competing alternative to labiodental fricatives
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Discussion
Bears on theories of speech organization and motor control

● Degree of constriction and involved articulators are not independent parameters!

● Primitive units of organization are modular muscle groupings that activate in a 
fixed proportion to achieve a particular functional goal                                      
(e.g., Bernstein 1967; Safavynia and Ting 2013; Gick and Stavness 2013; Ting et al. 2015)

Understanding these structures provides explanatory power for linguistic phenomena.
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Quantal regions
A region of a function in which large 
variation (error) in one dimension effects 
little response in some other (task) 
dimension 

● Solid line: strongly quantal
● Dashed line: fairly quantal
● Dotted line: not quantal
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Simulation 1 & 2: Muscle sets and ranges
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OOPs OOPi OOMs OOMi MENT RIS LLSAN LLS

Bilabial – – 30 30 20 20 – –

Labiodental – – – 26 26 26 36 50

Rounded 40 40 – – – – – –

Table 1: Maximum muscle stress (kPA) used for 
the three lip constrictions.

OOMs/i: superior/inferior 
marginal orbicularis oris
OOPs/i: superior/inferior 
peripheral orbicularis oris
MENT: mentalis
RIS: risorius
LLSAN: levator labii superioris 
alaeque nasi
LLS: levator labii superioris

Simulation 2 noise muscles: above muscles, plus depressor anguli 
oris, buccinator, depressor labii inferior, levator anguli oris, 
zygomaticus



Simulation 1: Q-scores
The Q-score of a function quantifies 
quantality (Moisik and Gick 2017):

● Compares first derivative in 
earlier and later ranges

● Based on heuristics in Moisik & 
Gick (2017):

○ Stop is strongly quantal
○ Fricative and approximant are 

moderately quantal
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Simulation 1 & 2: Calculating opening size
Simulation 1: Count pixels in coronal images, convert to mm2

● Labiodental calculated between lower lip and upper teeth
● Other sounds between lower lip and upper lip

Simulation 2: Calculate minimum opening size along a series of cutting planes

● Necessary because of large number of simulations

Probabilistic sampling of inputs done using the BatchSim tool

32


